材料科学
纳米孔
催化作用
电化学
纳米技术
法拉第效率
化学工程
贵金属
可逆氢电极
浸出(土壤学)
基质(水族馆)
碳纤维
电极
金属
工作电极
冶金
物理化学
复合材料
工程类
地质学
土壤科学
土壤水分
海洋学
复合数
化学
生物化学
环境科学
作者
Bohua Ren,Zhen Zhang,Guobin Wen,Xiaowen Zhang,Mi Xu,Yueying Weng,Yihang Nie,Haozhen Dou,Yi Jiang,Ya‐Ping Deng,Guiru Sun,Dan Luo,Lingling Shui,Xin Wang,Ming Feng,Aiping Yu,Zhongwei Chen
标识
DOI:10.1002/adma.202204637
摘要
Abstract Electrochemical CO 2 reduction to CO is a potential sustainable strategy for alleviating CO 2 emission and producing valuable fuels. In the quest to resolve its current problems of low‐energy efficiency and insufficient durability, a dual‐scale design strategy is proposed by implanting a non‐noble active Sn–ZnO heterointerface inside the nanopores of high‐surface‐area carbon nanospheres (Sn–ZnO@HC). The metal d‐bandwidth tuning of Sn and ZnO alters the extent of substrate–molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn–ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore‐scale control, Sn–ZnO@HC achieves a quite low potential of −0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI