Self-Supervised Discriminative Feature Learning for Deep Multi-View Clustering

判别式 计算机科学 聚类分析 杠杆(统计) 人工智能 特征学习 特征(语言学) 机器学习 模式识别(心理学) 一致性(知识库) 数据挖掘 语言学 哲学
作者
Jie Xu,Yazhou Ren,Huayi Tang,Zhimeng Yang,Lili Pan,Yang Yang,Xiaorong Pu,Philip S. Yu,Lifang He
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:88
标识
DOI:10.1109/tkde.2022.3193569
摘要

Multi-view clustering is an important research topic due to its capability to utilize complementary information from multiple views. However, there are few methods to consider the negative impact caused by certain views with unclear clustering structures, resulting in poor multi-view clustering performance. To address this drawback, we propose self-supervised discriminative feature learning for deep multi-view clustering (SDMVC). Concretely, deep autoencoders are applied to learn embedded features for each view independently. To leverage the multi-view complementary information, we concatenate all views’ embedded features to form the global features, which can overcome the negative impact of some views’ unclear clustering structures. In a self-supervised manner, pseudo-labels are obtained to build a unified target distribution to perform multi-view discriminative feature learning. During this process, global discriminative information can be mined to supervise all views to learn more discriminative features, which in turn are used to update the target distribution. Besides, this unified target distribution can make SDMVC learn consistent cluster assignments, which accomplishes the clustering consistency of multiple views while preserving their features’ diversity. Experiments on various types of multi-view datasets show that SDMVC outperforms 14 competitors including classic and state-of-the-art methods. The code is available at https://github.com/SubmissionsIn/SDMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰寄风完成签到,获得积分10
刚刚
共享精神应助MHB采纳,获得10
刚刚
咕咕噜噜完成签到,获得积分10
1秒前
1秒前
zxj完成签到,获得积分10
1秒前
葉12138发布了新的文献求助10
1秒前
02发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助复杂冰淇淋采纳,获得10
2秒前
lxl完成签到,获得积分10
3秒前
3秒前
三岁半完成签到,获得积分10
3秒前
xxwxx完成签到,获得积分10
4秒前
Tammy完成签到,获得积分10
4秒前
Claire发布了新的文献求助10
4秒前
悠悠完成签到 ,获得积分10
4秒前
Ry发布了新的文献求助30
5秒前
钰y完成签到 ,获得积分10
5秒前
5秒前
pluto应助活泼的幻桃采纳,获得10
6秒前
科研通AI5应助Luna采纳,获得10
6秒前
lyy227发布了新的文献求助10
6秒前
sjj完成签到,获得积分10
6秒前
科研通AI5应助清清采纳,获得10
6秒前
7秒前
8秒前
8秒前
hpy完成签到,获得积分10
9秒前
chaogeshiren完成签到,获得积分10
9秒前
王昱旻发布了新的文献求助10
9秒前
Zzz关注了科研通微信公众号
9秒前
雨儿完成签到,获得积分0
10秒前
10秒前
SWD完成签到,获得积分10
10秒前
吴1完成签到,获得积分10
10秒前
11秒前
研友_VZG7GZ应助小七采纳,获得10
11秒前
11秒前
likai发布了新的文献求助10
12秒前
英俊的铭应助关江宇采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556386
求助须知:如何正确求助?哪些是违规求助? 3131978
关于积分的说明 9394071
捐赠科研通 2832007
什么是DOI,文献DOI怎么找? 1556617
邀请新用户注册赠送积分活动 726755
科研通“疑难数据库(出版商)”最低求助积分说明 716062