Decoding Depression Severity From Intracranial Neural Activity

萧条(经济学) 解码方法 神经解码 医学 神经科学 心理学 计算机科学 算法 经济 宏观经济学
作者
Jiayang Xiao,Nicole R. Provenza,Joseph Asfouri,John Myers,Raissa Mathura,Brian Metzger,Joshua A. Adkinson,Anusha Allawala,Victoria Pirtle,Denise Oswalt,Ben Shofty,Meghan E. Robinson,Sanjay J. Mathew,Wayne K. Goodman,Nader Pouratian,Paul Schrater,Ankit Patel,Andreas S. Tolias,Kelly R. Bijanki,Xaq Pitkow
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:94 (6): 445-453 被引量:34
标识
DOI:10.1016/j.biopsych.2023.01.020
摘要

Disorders of mood and cognition are prevalent, disabling, and notoriously difficult to treat. Fueling this challenge in treatment is a significant gap in our understanding of their neurophysiological basis. We recorded high-density neural activity from intracranial electrodes implanted in depression-relevant prefrontal cortical regions in 3 human subjects with severe depression. Neural recordings were labeled with depression severity scores across a wide dynamic range using an adaptive assessment that allowed sampling with a temporal frequency greater than that possible with typical rating scales. We modeled these data using regularized regression techniques with region selection to decode depression severity from the prefrontal recordings. Across prefrontal regions, we found that reduced depression severity is associated with decreased low-frequency neural activity and increased high-frequency activity. When constraining our model to decode using a single region, spectral changes in the anterior cingulate cortex best predicted depression severity in all 3 subjects. Relaxing this constraint revealed unique, individual-specific sets of spatiospectral features predictive of symptom severity, reflecting the heterogeneous nature of depression. The ability to decode depression severity from neural activity increases our fundamental understanding of how depression manifests in the human brain and provides a target neural signature for personalized neuromodulation therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freebird发布了新的文献求助30
刚刚
科研通AI5应助WendyWen采纳,获得200
1秒前
fairy发布了新的文献求助10
1秒前
Super完成签到,获得积分10
2秒前
搜集达人应助月禾采纳,获得10
3秒前
科研狗完成签到,获得积分10
3秒前
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
KK完成签到,获得积分10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
36456657应助科研通管家采纳,获得10
4秒前
苏卿应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
缓慢如南应助科研通管家采纳,获得10
4秒前
橙子发布了新的文献求助10
4秒前
Jason应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
苏卿应助科研通管家采纳,获得10
5秒前
liuran应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI5应助zmy采纳,获得10
5秒前
小明发布了新的文献求助10
7秒前
msd2phd完成签到,获得积分10
7秒前
粽粽发布了新的文献求助10
8秒前
9秒前
科研通AI5应助Jtiger采纳,获得10
9秒前
庞_发布了新的文献求助10
9秒前
10秒前
10秒前
bxw完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199