Radiomics nomogram for prediction of microvascular invasion in hepatocellular carcinoma based on MR imaging with Gd-EOB-DTPA

列线图 无线电技术 医学 肝细胞癌 逻辑回归 单变量 放射科 接收机工作特性 Lasso(编程语言) 多元统计 肿瘤科 核医学 内科学 统计 数学 计算机科学 万维网
作者
Shuai Zhang,Chongfeng Duan,Xiaoming Zhou,Fang Liu,Xin Wang,Qiulin Shao,Yuanxiang Gao,Feng Duan,Ruirui Zhao,Gang Wang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:1
标识
DOI:10.3389/fonc.2022.1034519
摘要

Objective To develop a radiomics nomogram for predicting microvascular invasion (MVI) before surgery in hepatocellular carcinoma (HCC) patients. Materials and Methods The data from a total of 189 HCC patients (training cohort: n = 141; validation cohort: n = 48) were collected, involving the clinical data and imaging characteristics. Radiomics features of all patients were extracted from hepatobiliary phase (HBP) in 15 min. Least absolute shrinkage selection operator (LASSO) regression and logistic regression were utilized to reduce data dimensions, feature selection, and to construct a radiomics signature. Clinicoradiological factors were identified according to the univariate and multivariate analyses, which were incorporated into the final predicted nomogram. A nomogram was developed to predict MVI of HCC by combining radiomics signatures and clinicoradiological factors. Radiomics nomograms were evaluated for their discrimination capability, calibration, and clinical usefulness. Results In the clinicoradiological factors, gender, alpha-fetoprotein (AFP) level, tumor shape and halo sign served as the independent risk factors of MVI, with which the area under the curve (AUC) is 0.802. Radiomics signatures covering 14 features at HBP 15 min can effectively predict MVI in HCC, to construct radiomics signature model, with the AUC of 0.732. In the final nomogram model the clinicoradiological factors and radiomics signatures were integrated, outperforming the clinicoradiological model (AUC 0.884 vs. 0.802; p <0.001) and radiomics signatures model (AUC 0.884 vs. 0.732; p < 0.001) according to Delong test results. A robust calibration and discrimination were demonstrated in the nomogram model. The results of decision curve analysis (DCA) showed more significantly clinical efficiency of the nomogram model in comparison to the clinicoradiological model and the radiomic signature model. Conclusions Depending on the clinicoradiological factors and radiological features on HBP 15 min images, nomograms can effectively predict MVI status in HCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助核桃采纳,获得10
1秒前
2秒前
2秒前
3秒前
NexusExplorer应助小慧儿采纳,获得10
4秒前
5秒前
听海发布了新的文献求助10
5秒前
6秒前
英姑应助caizhiwei采纳,获得10
6秒前
搜集达人应助认真的豌豆采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得20
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得30
7秒前
7秒前
李健的粉丝团团长应助CCR采纳,获得30
7秒前
华仔应助科研通管家采纳,获得10
7秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
木瓜、发布了新的文献求助30
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
机智初夏发布了新的文献求助10
9秒前
9秒前
zcydbttj2011完成签到 ,获得积分10
9秒前
adgcxvjj应助wxyllxx采纳,获得10
10秒前
wxy发布了新的文献求助10
10秒前
10秒前
慢慢发布了新的文献求助10
11秒前
FUsir发布了新的文献求助10
11秒前
右右发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669