Vehicle routing with heterogeneous service types: Optimizing post-harvest preprocessing operations for fruits and vegetables in short food supply chains

车辆路径问题 预处理器 计算机科学 背景(考古学) 供应链 元启发式 布线(电子设计自动化) 服务(商务) 数学优化 整数规划 整数(计算机科学) 运筹学 人工智能 算法 数学 生物 计算机网络 经济 古生物学 经济 程序设计语言 法学 政治学
作者
Na Lin,Renzo Akkerman,Argyris Kanellopoulos,Xiangpei Hu,Xuping Wang,Junhu Ruan
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:172: 103084-103084
标识
DOI:10.1016/j.tre.2023.103084
摘要

This study focuses on the post-harvest preprocessing of fruits and vegetables, aiming to provide an effective way to conduct preprocessing operations in short food supply chains. We consider both a heterogeneous fleet of mobile preprocessing units and the possibility to pick up products for centralized preprocessing. The resulting problem is a variant of the classic heterogeneous fleet vehicle routing problems with time windows (HFVRPTW), with the additional consideration of multi-depot and heterogeneous service types, which we refer to as HFVRPTW-MDHS. These additional considerations are important to include in the development of more efficient food supply chains, but lead to a challenging routing problem. In this paper, we formulate the HFVRPTW-MDHS using a mixed-integer linear programming model. Due to the complexity of the model, we propose a customized adaptive large neighborhood search (ALNS) metaheuristic. We design a multi-level struct-based solution representation to improve the efficiency of the ALNS and develop customized methods for solution evaluation, feasibility checks, and neighborhood search. Comparing our results with the results of an exact algorithm and solutions in the existing literature, we find that our ALNS algorithm can obtain high-quality solutions quickly when solving HFVRPTW-MDHS and related variants of the VRP. Finally, we study the application of our approach in the case of precooling, which is a commonly used preprocessing operation, to illustrate the effectiveness of our approach in a relevant practical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
楚chu发布了新的文献求助30
1秒前
这是谁发布了新的文献求助10
2秒前
情怀应助精明的灵珊采纳,获得10
3秒前
penguinli发布了新的文献求助10
4秒前
5秒前
259185发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
徐徐徐应助sjc采纳,获得10
8秒前
跳跃的凝安完成签到,获得积分10
9秒前
范先生发布了新的文献求助10
9秒前
9秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
罗又柔应助科研通管家采纳,获得10
10秒前
zyfqpc应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
罗又柔应助科研通管家采纳,获得10
11秒前
11秒前
yn完成签到,获得积分10
11秒前
11秒前
11秒前
曼曼来完成签到,获得积分10
11秒前
penguinli完成签到,获得积分10
12秒前
领导范儿应助老中医采纳,获得20
12秒前
13秒前
13秒前
SciGPT应助时尚凝云采纳,获得10
13秒前
13秒前
hjs888发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144663
求助须知:如何正确求助?哪些是违规求助? 2796129
关于积分的说明 7818009
捐赠科研通 2452286
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627339
版权声明 601432