Vehicle routing with heterogeneous service types: Optimizing post-harvest preprocessing operations for fruits and vegetables in short food supply chains

车辆路径问题 预处理器 计算机科学 背景(考古学) 供应链 元启发式 布线(电子设计自动化) 服务(商务) 数学优化 整数规划 运筹学 人工智能 算法 数学 生物 计算机网络 经济 古生物学 经济 法学 政治学
作者
Na Lin,Renzo Akkerman,Argyris Kanellopoulos,Xiangpei Hu,Xuping Wang,Junhu Ruan
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:172: 103084-103084 被引量:8
标识
DOI:10.1016/j.tre.2023.103084
摘要

This study focuses on the post-harvest preprocessing of fruits and vegetables, aiming to provide an effective way to conduct preprocessing operations in short food supply chains. We consider both a heterogeneous fleet of mobile preprocessing units and the possibility to pick up products for centralized preprocessing. The resulting problem is a variant of the classic heterogeneous fleet vehicle routing problems with time windows (HFVRPTW), with the additional consideration of multi-depot and heterogeneous service types, which we refer to as HFVRPTW-MDHS. These additional considerations are important to include in the development of more efficient food supply chains, but lead to a challenging routing problem. In this paper, we formulate the HFVRPTW-MDHS using a mixed-integer linear programming model. Due to the complexity of the model, we propose a customized adaptive large neighborhood search (ALNS) metaheuristic. We design a multi-level struct-based solution representation to improve the efficiency of the ALNS and develop customized methods for solution evaluation, feasibility checks, and neighborhood search. Comparing our results with the results of an exact algorithm and solutions in the existing literature, we find that our ALNS algorithm can obtain high-quality solutions quickly when solving HFVRPTW-MDHS and related variants of the VRP. Finally, we study the application of our approach in the case of precooling, which is a commonly used preprocessing operation, to illustrate the effectiveness of our approach in a relevant practical context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助jdndbd采纳,获得10
刚刚
luca完成签到,获得积分10
2秒前
小米完成签到,获得积分10
2秒前
套个猴子完成签到,获得积分20
2秒前
obsession发布了新的文献求助20
2秒前
何双发布了新的文献求助10
3秒前
方文杰发布了新的文献求助10
3秒前
几酌发布了新的文献求助10
3秒前
机灵水卉发布了新的文献求助10
4秒前
ven完成签到,获得积分10
4秒前
科研通AI6.1应助小马采纳,获得10
5秒前
BowieHuang应助loveme采纳,获得10
5秒前
BowieHuang应助loveme采纳,获得10
5秒前
宋子琛完成签到,获得积分10
6秒前
WJ完成签到,获得积分10
6秒前
ding应助成就的咖啡采纳,获得10
6秒前
LERROR发布了新的文献求助10
7秒前
烟花应助小蟹采纳,获得10
8秒前
小二郎应助舒适尔容采纳,获得10
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
酷炫若魔完成签到,获得积分10
9秒前
10秒前
英姑应助zheng-homes采纳,获得10
10秒前
英俊的铭应助pxl99567采纳,获得10
10秒前
俗签完成签到,获得积分10
11秒前
11秒前
ys关闭了ys文献求助
12秒前
IMFI发布了新的文献求助10
12秒前
13秒前
烟花应助爬不起来采纳,获得10
13秒前
13秒前
14秒前
emm发布了新的文献求助10
14秒前
xff发布了新的文献求助10
14秒前
注米完成签到,获得积分10
14秒前
zeqian发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851