Vehicle routing with heterogeneous service types: Optimizing post-harvest preprocessing operations for fruits and vegetables in short food supply chains

车辆路径问题 预处理器 计算机科学 背景(考古学) 供应链 元启发式 布线(电子设计自动化) 服务(商务) 数学优化 整数规划 运筹学 人工智能 算法 数学 生物 计算机网络 经济 古生物学 经济 法学 政治学
作者
Na Lin,Renzo Akkerman,Argyris Kanellopoulos,Xiangpei Hu,Xuping Wang,Junhu Ruan
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:172: 103084-103084 被引量:8
标识
DOI:10.1016/j.tre.2023.103084
摘要

This study focuses on the post-harvest preprocessing of fruits and vegetables, aiming to provide an effective way to conduct preprocessing operations in short food supply chains. We consider both a heterogeneous fleet of mobile preprocessing units and the possibility to pick up products for centralized preprocessing. The resulting problem is a variant of the classic heterogeneous fleet vehicle routing problems with time windows (HFVRPTW), with the additional consideration of multi-depot and heterogeneous service types, which we refer to as HFVRPTW-MDHS. These additional considerations are important to include in the development of more efficient food supply chains, but lead to a challenging routing problem. In this paper, we formulate the HFVRPTW-MDHS using a mixed-integer linear programming model. Due to the complexity of the model, we propose a customized adaptive large neighborhood search (ALNS) metaheuristic. We design a multi-level struct-based solution representation to improve the efficiency of the ALNS and develop customized methods for solution evaluation, feasibility checks, and neighborhood search. Comparing our results with the results of an exact algorithm and solutions in the existing literature, we find that our ALNS algorithm can obtain high-quality solutions quickly when solving HFVRPTW-MDHS and related variants of the VRP. Finally, we study the application of our approach in the case of precooling, which is a commonly used preprocessing operation, to illustrate the effectiveness of our approach in a relevant practical context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
刚刚
年年年年发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
一支菜馅儿馄饨完成签到,获得积分10
4秒前
垃圾智造者完成签到,获得积分10
4秒前
5秒前
酷波er应助张张采纳,获得10
6秒前
量子星尘发布了新的文献求助30
6秒前
Tang完成签到,获得积分10
7秒前
8秒前
老实幻姬发布了新的文献求助10
8秒前
8秒前
zxxxx发布了新的文献求助10
9秒前
叽里呱啦完成签到 ,获得积分10
9秒前
yyjdtc完成签到,获得积分10
10秒前
蓝华完成签到 ,获得积分10
10秒前
yrj完成签到 ,获得积分10
10秒前
聪慧咖啡豆完成签到,获得积分10
10秒前
Leticia发布了新的文献求助10
11秒前
情怀应助香蕉半邪采纳,获得10
11秒前
微风完成签到,获得积分10
12秒前
Lee发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
多吃青菜完成签到,获得积分10
13秒前
PhDLi完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
16秒前
agestern完成签到,获得积分10
17秒前
hihi发布了新的文献求助10
18秒前
车访枫完成签到,获得积分10
18秒前
lqq发布了新的文献求助10
18秒前
18秒前
18秒前
小二郎应助酸柠檬本檬采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377