A latent profile transition analysis and influencing factors of internet addiction for adolescents: A short-term longitudinal study

上瘾 互联网 心理学 纵向研究 焦虑 临床心理学 心理健康 精神科 医学 万维网 计算机科学 病理
作者
Guangming Li
出处
期刊:Heliyon [Elsevier]
卷期号:9 (3): e14412-e14412
标识
DOI:10.1016/j.heliyon.2023.e14412
摘要

Internet addiction for adolescent, which is widely concerned by the whole society, has become a public health problem. Internet addiction not only had a negative impact on physical and mental development of adolescents, but also was harmful to their study, life, interpersonal communication and personality formation, and so on. In recent years, the data analysis methods of longitudinal research have developed rapidly. It not only focused on the overall average growth trend, but also considered the differences in the individual trends. Latent profile transition analysis (LPTA) is an extension of latent profile analysis (LPA) and latent transition analysis (LTA), and is a longitudinal data analysis method. LPTA can simultaneously estimate group membership in multiple time points and their latent transition tendency among these subgroups between each two time points. This study used LPTA to explore the development trend of adolescent internet addiction over time and its influencing factors. 1033 adolescents participated in a short-term 6-month longitudinal study with a total of three tests. Participants completed internet addiction test, self-rating anxiety scale and self-rating depression scale. The results showed that: (1) There are three categories of adolescent internet addiction, namely non-internet addiction group, low-internet addiction group and high-internet addiction group. (2) Non-internet addiction group has a strong stability. Low-internet addiction group has a high probability to become non-internet addiction group or high-internet addiction group. (3) Boys are more likely than girls to develop into high-internet addiction group. Anxiety and depression both affect the development of adolescent internet addiction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soso应助悦耳娩采纳,获得10
刚刚
冷月完成签到,获得积分10
1秒前
1秒前
123321发布了新的文献求助10
1秒前
超大泡芙完成签到,获得积分10
1秒前
JamesPei应助淡定沛珊采纳,获得10
1秒前
2秒前
sss发布了新的文献求助10
3秒前
yxx发布了新的文献求助20
3秒前
Jasper应助欢呼妙菱采纳,获得10
3秒前
3秒前
sumeiling完成签到,获得积分20
4秒前
4秒前
万万想到了完成签到,获得积分10
4秒前
英姑应助一折悲画扇采纳,获得30
5秒前
5秒前
皮皮团完成签到 ,获得积分10
5秒前
6秒前
YY完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
sss完成签到,获得积分10
9秒前
安的沛白完成签到 ,获得积分10
9秒前
完美世界应助756333725采纳,获得30
9秒前
Gqx发布了新的文献求助10
10秒前
zylt50完成签到,获得积分10
10秒前
丰富热狗应助风趣白羊采纳,获得30
11秒前
科研通AI5应助zz采纳,获得10
11秒前
dyc0222完成签到,获得积分10
11秒前
kingwill举报zoey求助涉嫌违规
12秒前
海棠依旧完成签到,获得积分10
12秒前
Owen应助LiXinghui采纳,获得10
13秒前
Peak_Chen完成签到,获得积分10
13秒前
Esther完成签到 ,获得积分10
13秒前
酷波er应助紧张的妖妖采纳,获得10
14秒前
领导范儿应助njmuzyzy采纳,获得10
15秒前
鑫搭完成签到,获得积分10
15秒前
虚心的惮发布了新的文献求助10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3517287
求助须知:如何正确求助?哪些是违规求助? 3099428
关于积分的说明 9245889
捐赠科研通 2794858
什么是DOI,文献DOI怎么找? 1533831
邀请新用户注册赠送积分活动 713055
科研通“疑难数据库(出版商)”最低求助积分说明 707607