Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network

计算机科学 数据挖掘 图形 风力发电 人工神经网络 人工智能 机器学习 理论计算机科学 电气工程 工程类
作者
Jiayang Liu,Xiaosun Wang,Fuqi Xie,Shijing Wu,Deng Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 106000-106000 被引量:50
标识
DOI:10.1016/j.engappai.2023.106000
摘要

Condition monitoring of wind turbines is critical to ensure their long-term stable operation. With the benefit of deep learning techniques, WTs’ health status information can be mined more fully from supervisory control and data acquisition data. However, these deep learning-based condition monitoring methods have the following limitations. (1) They only can process regularly structured data, such as pictures, rather than general domains. (2) The spatial properties of wind turbines multi-sensor networks, i.e., connectivity and globality, are neglected. To overcome the above limitations, a new condition monitoring network named spatio-temporal graph neural network is proposed in this paper. First, the missing value supplement and the selection of variables with maximal information coefficient are applied. Meanwhile, the top-k nearest neighbors is employed to construct graphs. Then, a spatio-temporal block is established based on graph convolution networks and gated recurrent unit. By stacking multiple spatio-temporal blocks, the monitoring variables are estimated by feeding the learned features to the last prediction layer. Lastly, the proposed spatio-temporal graph neural network is validated using real wind farm supervisory control and data acquisition data. The experimental results indicate that the proposed method can detect the early abnormal operation efficiently and is superior to some existing methods, which can promote the utilization of renewable energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
冯昊完成签到,获得积分10
3秒前
3秒前
xx发布了新的文献求助10
4秒前
4秒前
jackxxx完成签到,获得积分10
4秒前
迅速平灵发布了新的文献求助10
4秒前
5秒前
bkagyin应助釉荼采纳,获得30
6秒前
6秒前
7秒前
刘子田发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
hfhkjh发布了新的文献求助10
9秒前
海鹰发布了新的文献求助10
9秒前
搜集达人应助龙川武生采纳,获得10
9秒前
蜜汁章鱼丸完成签到 ,获得积分10
9秒前
9秒前
able发布了新的文献求助10
10秒前
lcc李川川完成签到,获得积分10
10秒前
10秒前
冯昊发布了新的文献求助10
11秒前
温茶发布了新的文献求助30
11秒前
酷波er应助裴涵强采纳,获得10
11秒前
聪明飞飞完成签到,获得积分10
12秒前
我是老大应助陈文力采纳,获得10
12秒前
wenyh完成签到,获得积分10
12秒前
小团团完成签到 ,获得积分10
13秒前
缓慢含烟发布了新的文献求助10
13秒前
13秒前
你好发布了新的文献求助30
13秒前
smiling104发布了新的文献求助10
14秒前
LZxyH发布了新的文献求助10
14秒前
16秒前
小白关注了科研通微信公众号
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769694
求助须知:如何正确求助?哪些是违规求助? 5581034
关于积分的说明 15422447
捐赠科研通 4903349
什么是DOI,文献DOI怎么找? 2638182
邀请新用户注册赠送积分活动 1586070
关于科研通互助平台的介绍 1541180