Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network

计算机科学 数据挖掘 图形 风力发电 人工神经网络 人工智能 机器学习 理论计算机科学 电气工程 工程类
作者
Jiayang Liu,Xiaosun Wang,Fuqi Xie,Shijing Wu,Deng Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 106000-106000 被引量:36
标识
DOI:10.1016/j.engappai.2023.106000
摘要

Condition monitoring of wind turbines is critical to ensure their long-term stable operation. With the benefit of deep learning techniques, WTs’ health status information can be mined more fully from supervisory control and data acquisition data. However, these deep learning-based condition monitoring methods have the following limitations. (1) They only can process regularly structured data, such as pictures, rather than general domains. (2) The spatial properties of wind turbines multi-sensor networks, i.e., connectivity and globality, are neglected. To overcome the above limitations, a new condition monitoring network named spatio-temporal graph neural network is proposed in this paper. First, the missing value supplement and the selection of variables with maximal information coefficient are applied. Meanwhile, the top-k nearest neighbors is employed to construct graphs. Then, a spatio-temporal block is established based on graph convolution networks and gated recurrent unit. By stacking multiple spatio-temporal blocks, the monitoring variables are estimated by feeding the learned features to the last prediction layer. Lastly, the proposed spatio-temporal graph neural network is validated using real wind farm supervisory control and data acquisition data. The experimental results indicate that the proposed method can detect the early abnormal operation efficiently and is superior to some existing methods, which can promote the utilization of renewable energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩安发布了新的文献求助10
刚刚
舌T完成签到 ,获得积分10
刚刚
hanzhangjian发布了新的文献求助10
刚刚
SciGPT应助安安采纳,获得10
1秒前
1秒前
简单松鼠完成签到 ,获得积分10
1秒前
李明辉发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
酸菜萌萌鱼完成签到,获得积分10
1秒前
xixi发布了新的文献求助10
2秒前
jeffery111发布了新的文献求助10
2秒前
英姑应助科研废柴采纳,获得10
2秒前
科研通AI5应助ding采纳,获得10
3秒前
领导范儿应助sjfczyh采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
trq1007完成签到 ,获得积分10
5秒前
科研通AI5应助郭guo9采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
Akim应助小火苗采纳,获得10
6秒前
JamesPei应助徐冉采纳,获得10
6秒前
白石杏发布了新的文献求助10
8秒前
asdxsweef完成签到,获得积分10
8秒前
diyan_36发布了新的文献求助10
8秒前
jeffery111完成签到,获得积分10
9秒前
huanj完成签到 ,获得积分10
9秒前
纯爱战神完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
12秒前
三木发布了新的文献求助10
12秒前
櫹櫆完成签到 ,获得积分10
13秒前
georgett完成签到,获得积分10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785