Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network

计算机科学 数据挖掘 图形 风力发电 人工神经网络 人工智能 机器学习 理论计算机科学 电气工程 工程类
作者
Jiayang Liu,Xiaosun Wang,Fuqi Xie,Shijing Wu,Deng Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 106000-106000 被引量:36
标识
DOI:10.1016/j.engappai.2023.106000
摘要

Condition monitoring of wind turbines is critical to ensure their long-term stable operation. With the benefit of deep learning techniques, WTs’ health status information can be mined more fully from supervisory control and data acquisition data. However, these deep learning-based condition monitoring methods have the following limitations. (1) They only can process regularly structured data, such as pictures, rather than general domains. (2) The spatial properties of wind turbines multi-sensor networks, i.e., connectivity and globality, are neglected. To overcome the above limitations, a new condition monitoring network named spatio-temporal graph neural network is proposed in this paper. First, the missing value supplement and the selection of variables with maximal information coefficient are applied. Meanwhile, the top-k nearest neighbors is employed to construct graphs. Then, a spatio-temporal block is established based on graph convolution networks and gated recurrent unit. By stacking multiple spatio-temporal blocks, the monitoring variables are estimated by feeding the learned features to the last prediction layer. Lastly, the proposed spatio-temporal graph neural network is validated using real wind farm supervisory control and data acquisition data. The experimental results indicate that the proposed method can detect the early abnormal operation efficiently and is superior to some existing methods, which can promote the utilization of renewable energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu发布了新的文献求助30
刚刚
研友_08okB8关注了科研通微信公众号
刚刚
刚刚
刚刚
希望天下0贩的0应助kiteWYL采纳,获得10
2秒前
邓佳鑫Alan应助牛顿的苹果采纳,获得10
4秒前
wwz完成签到 ,获得积分10
5秒前
晚意完成签到 ,获得积分10
5秒前
6秒前
bi完成签到,获得积分10
6秒前
呆瓜发布了新的文献求助10
6秒前
7秒前
桐桐应助nenoaowu采纳,获得30
7秒前
7秒前
不吃橘子发布了新的文献求助10
9秒前
笑尽往事发布了新的文献求助10
9秒前
叶黄素完成签到,获得积分10
9秒前
成就的水桃完成签到,获得积分20
10秒前
lxb应助的的的的的采纳,获得10
11秒前
贝拉发布了新的文献求助10
12秒前
12秒前
井鼃完成签到,获得积分10
12秒前
super完成签到,获得积分10
12秒前
13秒前
Kowalski完成签到,获得积分10
13秒前
ewk发布了新的文献求助10
14秒前
14秒前
归安发布了新的文献求助10
16秒前
酷波er应助麻花精采纳,获得30
16秒前
叶黄素发布了新的文献求助80
17秒前
井鼃发布了新的文献求助10
19秒前
天天快乐应助微纳组刘同采纳,获得10
21秒前
21秒前
法知一发布了新的文献求助10
21秒前
首席医官完成签到,获得积分10
21秒前
栾小鱼完成签到,获得积分10
23秒前
23秒前
花椒的喵酱完成签到,获得积分10
24秒前
24秒前
Dungjyut完成签到,获得积分10
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542