Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network

计算机科学 数据挖掘 图形 风力发电 人工神经网络 人工智能 机器学习 理论计算机科学 电气工程 工程类
作者
Jiayang Liu,Xiaosun Wang,Fuqi Xie,Shijing Wu,Deng Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 106000-106000 被引量:50
标识
DOI:10.1016/j.engappai.2023.106000
摘要

Condition monitoring of wind turbines is critical to ensure their long-term stable operation. With the benefit of deep learning techniques, WTs’ health status information can be mined more fully from supervisory control and data acquisition data. However, these deep learning-based condition monitoring methods have the following limitations. (1) They only can process regularly structured data, such as pictures, rather than general domains. (2) The spatial properties of wind turbines multi-sensor networks, i.e., connectivity and globality, are neglected. To overcome the above limitations, a new condition monitoring network named spatio-temporal graph neural network is proposed in this paper. First, the missing value supplement and the selection of variables with maximal information coefficient are applied. Meanwhile, the top-k nearest neighbors is employed to construct graphs. Then, a spatio-temporal block is established based on graph convolution networks and gated recurrent unit. By stacking multiple spatio-temporal blocks, the monitoring variables are estimated by feeding the learned features to the last prediction layer. Lastly, the proposed spatio-temporal graph neural network is validated using real wind farm supervisory control and data acquisition data. The experimental results indicate that the proposed method can detect the early abnormal operation efficiently and is superior to some existing methods, which can promote the utilization of renewable energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ayn发布了新的文献求助10
刚刚
You发布了新的文献求助10
刚刚
1秒前
3秒前
FashionBoy应助科研民工采纳,获得10
4秒前
灿烂千阳完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
NXK发布了新的文献求助10
5秒前
5秒前
5秒前
SciGPT应助no1isme采纳,获得10
5秒前
瓜瓜发布了新的文献求助10
5秒前
饱满的诗霜关注了科研通微信公众号
6秒前
cc应助wing采纳,获得20
6秒前
211发布了新的文献求助10
6秒前
修越完成签到,获得积分10
7秒前
CodeCraft应助Regina采纳,获得10
7秒前
情怀应助xixilamn采纳,获得10
7秒前
壮壮发布了新的文献求助10
8秒前
在水一方应助小新同学采纳,获得10
8秒前
9秒前
9秒前
Owen应助sule采纳,获得10
9秒前
9秒前
修越发布了新的文献求助10
9秒前
大模型应助荻野千寻采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
xiaowang发布了新的文献求助10
10秒前
11秒前
lintao0836完成签到,获得积分20
11秒前
11秒前
12秒前
xxx发布了新的文献求助10
12秒前
13秒前
粗心的忆山完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932