Revolutionizing Brain Tumor Detection Using Explainable AI in MRI Images

可解释性 计算机科学 卷积神经网络 人工智能 脑瘤 鉴定(生物学) 磁共振成像 机器学习 透明度(行为) 过程(计算) 模式识别(心理学) 医学 放射科 病理 植物 计算机安全 生物 操作系统
作者
Md. Ariful Islam,M. F. Mridha,Mejdl Safran,Sultan Alfarhood,Md. Mohsin Kabir
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:38 (3) 被引量:1
标识
DOI:10.1002/nbm.70001
摘要

ABSTRACT Due to the complex structure of the brain, variations in tumor shapes and sizes, and the resemblance between tumor and healthy tissues, the reliable and efficient identification of brain tumors through magnetic resonance imaging (MRI) presents a persistent challenge. Given that manual identification of tumors is often time‐consuming and prone to errors, there is a clear need for advanced automated procedures to enhance detection accuracy and efficiency. Our study addresses the difficulty by creating an improved convolutional neural network (CNN) framework derived from DenseNet121 to augment the accuracy of brain tumor detection. The proposed model was comprehensively evaluated against 12 baseline CNN models and 5 state‐of‐the‐art architectures, namely Vision Transformer (ViT), ConvNeXt, MobileNetV3, FastViT, and InternImage. The proposed model achieved exceptional accuracy rates of 98.4% and 99.3% on two separate datasets, outperforming all 17 models evaluated. Our improved model was integrated using Explainable AI (XAI) techniques, particularly Grad‐CAM++, facilitating accurate diagnosis and localization of complex tumor instances, including small metastatic lesions and nonenhancing low‐grade gliomas. The XAI framework distinctly highlights essential areas signifying tumor presence, hence enhancing the model's accuracy and interpretability. The results highlight the potential of our method as a reliable diagnostic instrument for healthcare practitioners' ability to comprehend and confirm artificial intelligence (AI)‐driven predictions but also bring transparency to the model's decision‐making process, ultimately improving patient outcomes. This advancement signifies a significant progression in the use of AI in neuro‐oncology, enhancing diagnostic interpretability and precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉鱼儿完成签到 ,获得积分10
2秒前
3秒前
陈龙平完成签到 ,获得积分10
4秒前
7秒前
yys完成签到,获得积分10
7秒前
spy完成签到 ,获得积分10
8秒前
gengfu完成签到,获得积分10
12秒前
hyjcs完成签到,获得积分0
14秒前
韭菜发布了新的文献求助10
14秒前
烤鸭完成签到 ,获得积分10
18秒前
wanci应助韭菜采纳,获得10
18秒前
Dotson完成签到,获得积分10
22秒前
22秒前
Ningxin完成签到,获得积分10
22秒前
舒适静丹完成签到,获得积分10
29秒前
coc完成签到 ,获得积分10
29秒前
30秒前
吃猫的鱼发布了新的文献求助10
31秒前
佳言2009完成签到,获得积分10
32秒前
车灵波完成签到 ,获得积分10
40秒前
nano完成签到 ,获得积分10
42秒前
啊娴仔发布了新的文献求助10
42秒前
吃猫的鱼完成签到,获得积分10
43秒前
乌云乌云快走开完成签到,获得积分10
49秒前
AAAAA完成签到 ,获得积分10
52秒前
53秒前
韭菜完成签到,获得积分20
55秒前
恰恰完成签到,获得积分10
58秒前
zxt完成签到,获得积分10
59秒前
花开四海完成签到 ,获得积分10
1分钟前
1分钟前
Sun1c7完成签到,获得积分10
1分钟前
1分钟前
胖宏完成签到 ,获得积分10
1分钟前
FUNG完成签到 ,获得积分10
1分钟前
韭黄发布了新的文献求助10
1分钟前
jiayou完成签到,获得积分10
1分钟前
勤恳冰淇淋完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
社恐Forza应助科研通管家采纳,获得50
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761059
求助须知:如何正确求助?哪些是违规求助? 3304934
关于积分的说明 10131347
捐赠科研通 3018813
什么是DOI,文献DOI怎么找? 1657854
邀请新用户注册赠送积分活动 791721
科研通“疑难数据库(出版商)”最低求助积分说明 754604