Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma

腺癌 打字 计算机科学 计算生物学 人工智能 医学 生物 内科学 语音识别 癌症
作者
Mengmeng Hua,Tao Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-87419-4
摘要

To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somatic mutation data from The Cancer Genome Atlas LUAD cohort were analyzed to identify lactylation cancer subtypes (CSs) using 10 multiomics ensemble clustering techniques. The findings were then validated using the GSE31210 and GSE13213 LUAD cohorts. A prognosis model for LUAD was developed using the identified hub LRGs to divide patients into high- and low-risk groups. The effectiveness of this model was validated. We identified two lactylation CSs, which were validated in the GSE31210 and GSE13213 LUAD cohorts. Nine hub LRGs, namely HNRNPC, PPIA, BZW1, GAPDH, H2AFZ, RAN, KIF2C, RACGAP1, and WBP11, were used to construct the prognosis model. In the subsequent prognosis validation, the high-risk group included more patients with stage T3 + 4, N1 + 2 + 3, M1, and III + IV cancer; higher recurrence/metastasis rates; and lower 1, 3, and 5 year overall survival rates. In the oncogenic pathway analysis, most of the oncogenic mutations were detected in the high-risk group. The tumor microenvironment analysis illustrated that immune activity was notably elevated in low-risk patients, indicating they might more strongly respond to immunotherapy than high-risk patients. Further, oncoPredict analysis revealed that low-risk patients have increased sensitivity to chemotherapeutics. Overall, we developed a model that combines multiomic analysis and machine learning for LUAD prognosis. Our findings represent a valuable reference for further understanding the important function of lactylation modification pathways in LUAD progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的雁完成签到 ,获得积分10
1秒前
科研通AI2S应助qiang344采纳,获得10
1秒前
今后应助令a采纳,获得10
3秒前
5秒前
FashionBoy应助漫步海滩采纳,获得10
7秒前
小二郎应助fa采纳,获得10
8秒前
8秒前
科研通AI5应助七页禾采纳,获得10
8秒前
冷酷沛柔完成签到,获得积分10
9秒前
David完成签到,获得积分10
9秒前
CodeCraft应助lc采纳,获得10
10秒前
10秒前
潇洒发布了新的文献求助10
12秒前
123456发布了新的文献求助10
12秒前
Na完成签到 ,获得积分10
13秒前
Cchoman应助科研通管家采纳,获得10
13秒前
林夏应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得20
13秒前
无花果应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
无名老大应助科研通管家采纳,获得30
14秒前
科目三应助科研通管家采纳,获得10
14秒前
summer应助科研通管家采纳,获得10
14秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
15秒前
17秒前
爆米花应助princeadam采纳,获得10
18秒前
毛豆爸爸完成签到,获得积分0
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512588
求助须知:如何正确求助?哪些是违规求助? 3095007
关于积分的说明 9225655
捐赠科研通 2789852
什么是DOI,文献DOI怎么找? 1530910
邀请新用户注册赠送积分活动 711166
科研通“疑难数据库(出版商)”最低求助积分说明 706626