催化作用
材料科学
氢
溅射沉积
溅射
化学工程
腔磁控管
无机化学
纳米技术
薄膜
有机化学
化学
工程类
作者
T. Suszko,Ewa Dobruchowska,W. Gulbiński,Grzegorz Greczyński,J. Morgiel,Bartosz Kawczyński,Karol Załęski,Krzysztof Dorywalski,Stanisław Pogorzelski
标识
DOI:10.1021/acsami.4c17743
摘要
This study examines the structure and properties of NiMo-C coatings synthesized via reactive magnetron sputtering of a NiMo alloy target in an argon/acetylene atmosphere. The coating structure evolves with carbon content from nanocrystalline, through amorphous to quasi-amorphous with a nanocolumnar structure. The nanostructure consists of metallic columns perpendicular to the substrate surrounded by an amorphous carbon shell. The coatings are evaluated for their potential use as catalytic materials in the hydrogen evolution reaction (HER) in an acidic environment. The medium carbon content coatings show optimal properties in this direction, i.e., high corrosion resistance in an acidic environment and good HER performance described by the Tafel slope and characteristic overpotentials. Even at the highest carbon content, 74 at. %, the Tafel slope does not increase substantially, which is more likely attributable to the distinctive nanocolumnar structure, ensuring the presence of catalytic centers in the form of metallic islands on the surface. At the highest current densities applied, a weak but visible correlation is observed between the characteristic overpotentials and the contact angle hysteresis derived from the wettability measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI