Advanced theoretical modeling methodologies for electrocatalyst design in sustainable energy conversion

电催化剂 计算机科学 能量转换 可持续能源 系统工程 工艺工程 化学 工程类 可再生能源 物理 电气工程 热力学 电极 电化学 物理化学
作者
Tianyi Wang,Qilong Wu,Yun Han,Zhongyuan Guo,Jun Chen,Chuangwei Liu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:12 (1)
标识
DOI:10.1063/5.0235572
摘要

Electrochemical reactions are pivotal for energy conversion and storage to achieve a carbon-neutral and sustainable society, and optimal electrocatalysts are essential for their industrial applications. Theoretical modeling methodologies, such as density functional theory (DFT) and molecular dynamics (MD), efficiently assess electrochemical reaction mechanisms and electrocatalyst performance at atomic and molecular levels. However, its intrinsic algorithm limitations and high computational costs for large-scale systems generate gaps between experimental observations and calculation simulation, restricting the accuracy and efficiency of electrocatalyst design. Combining machine learning (ML) is a promising strategy to accelerate the development of electrocatalysts. The ML-DFT frameworks establish accurate property–structure–performance relations to predict and verify novel electrocatalysts' properties and performance, providing a deep understanding of reaction mechanisms. The ML-based methods also accelerate the solution of MD and DFT. Moreover, integrating ML and experiment characterization techniques represents a cutting-edge approach to providing insights into the structural, electronic, and chemical changes under working conditions. This review will summarize the DFT development and the current ML application status for electrocatalyst design in various electrochemical energy conversions. The underlying physical fundaments, application advancements, and challenges will be summarized. Finally, future research directions and prospects will be proposed to guide novel electrocatalyst design for the sustainable energy revolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心凡发布了新的文献求助10
刚刚
znnnnnnnnnn发布了新的文献求助10
刚刚
zdd发布了新的文献求助10
刚刚
CodeCraft应助白方明采纳,获得10
刚刚
1秒前
xxi发布了新的文献求助10
1秒前
阿卡波糖完成签到,获得积分10
1秒前
ZZ完成签到,获得积分10
1秒前
wx关注了科研通微信公众号
1秒前
小王爱科研完成签到,获得积分10
2秒前
sun发布了新的文献求助10
2秒前
李健的小迷弟应助QYH采纳,获得10
3秒前
3秒前
充电宝应助Liexinun采纳,获得10
3秒前
3秒前
3秒前
所所应助songvv采纳,获得10
3秒前
4秒前
顺利比耶发布了新的文献求助150
4秒前
5秒前
不安青牛应助inb采纳,获得10
5秒前
111发布了新的文献求助30
5秒前
5秒前
5秒前
hhh发布了新的文献求助10
6秒前
6秒前
希望天下0贩的0应助yuefeng采纳,获得10
7秒前
7秒前
ling玲发布了新的文献求助10
8秒前
8秒前
傻鱼辣椒完成签到 ,获得积分10
9秒前
Li发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
Jiny发布了新的文献求助10
10秒前
缥缈的采文完成签到,获得积分10
10秒前
Hello应助aDou采纳,获得10
11秒前
斗破苍穹发布了新的文献求助10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474842
求助须知:如何正确求助?哪些是违规求助? 3066929
关于积分的说明 9101738
捐赠科研通 2758293
什么是DOI,文献DOI怎么找? 1513527
邀请新用户注册赠送积分活动 699633
科研通“疑难数据库(出版商)”最低求助积分说明 699065