LIDD-YOLO: a lightweight industrial defect detection network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 几何学 操作系统 组合数学 数学分析
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 0161b5-0161b5 被引量:12
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30–60 frames per second (FPS), which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the you only look once (YOLO) series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called lightweight industrial defect detection network with improved YOLO architecture (LIDD-YOLO) for high-precision and real-time industrial defect detection. Firstly, we propose the large separable kernel spatial pyramid pooling (SPP) module, which is a SPP structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with dual convolutional (Dual Conv) kernel convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with ghost convolution and decoupled fully connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and printed circuit board (PCB) defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean average precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and floating point operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助彪壮的慕山采纳,获得10
刚刚
1秒前
1秒前
科研人发布了新的文献求助10
1秒前
酷波er应助懒123采纳,获得10
1秒前
2秒前
2秒前
gffh完成签到,获得积分10
3秒前
陈章zz发布了新的文献求助20
3秒前
He完成签到,获得积分10
4秒前
4秒前
Leon发布了新的文献求助30
4秒前
领导范儿应助形容采纳,获得10
4秒前
斯文败类应助草莓苹果采纳,获得10
5秒前
死亦生矣发布了新的文献求助10
6秒前
YWD发布了新的文献求助10
6秒前
tttt发布了新的文献求助10
6秒前
世界小奇发布了新的文献求助10
7秒前
Yuan发布了新的文献求助10
7秒前
汉堡包应助感动冰岚采纳,获得10
8秒前
科研通AI6应助jiang采纳,获得10
8秒前
淡淡的无敌完成签到 ,获得积分10
10秒前
10秒前
天天快乐应助kkyy采纳,获得30
11秒前
autism发布了新的文献求助10
11秒前
独特的水香完成签到,获得积分10
11秒前
脑洞疼应助背后的映寒采纳,获得10
11秒前
华仔应助Sing采纳,获得10
11秒前
11秒前
11秒前
12秒前
lyx完成签到,获得积分20
12秒前
12秒前
dagongren关注了科研通微信公众号
12秒前
任性的皮皮虾完成签到,获得积分10
12秒前
12秒前
涨涨涨张发布了新的文献求助10
12秒前
蔬菜狗狗发布了新的文献求助20
12秒前
13秒前
orixero应助潼络采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928