LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 几何学 操作系统 组合数学 数学分析
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:4
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoziyi666完成签到,获得积分10
刚刚
1秒前
wjz完成签到,获得积分10
1秒前
坚定的琦完成签到,获得积分10
2秒前
2秒前
2秒前
司空豁应助彭Prrrr采纳,获得10
2秒前
2秒前
桐桐应助害羞的花生采纳,获得10
3秒前
3秒前
原始人完成签到,获得积分10
3秒前
克己复礼完成签到,获得积分20
4秒前
寒冷听枫完成签到,获得积分20
4秒前
4秒前
5秒前
lukawa发布了新的文献求助10
5秒前
韩涵完成签到 ,获得积分10
6秒前
鸭子兔完成签到,获得积分10
7秒前
7秒前
FashionBoy应助烂漫猫咪采纳,获得10
7秒前
默默南晴发布了新的文献求助10
7秒前
猴子大王666完成签到,获得积分10
7秒前
ardejiang发布了新的文献求助10
7秒前
跳不起来的大神完成签到 ,获得积分10
7秒前
8秒前
情怀应助木木采纳,获得10
8秒前
领导范儿应助lailai采纳,获得10
8秒前
kun完成签到,获得积分10
8秒前
迷糊发布了新的文献求助10
8秒前
8秒前
大成子发布了新的文献求助10
9秒前
专注可兰完成签到,获得积分10
9秒前
思源应助hooke采纳,获得10
9秒前
善学以致用应助挺喜欢你采纳,获得10
10秒前
kingwill应助感动书文采纳,获得20
10秒前
体贴的夜安应助kento采纳,获得50
10秒前
ZHANES发布了新的文献求助30
10秒前
zz发布了新的文献求助10
11秒前
123456789完成签到,获得积分10
11秒前
2464259931发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558