LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南辰关注了科研通微信公众号
1秒前
夜雨完成签到,获得积分10
1秒前
登徒子好色完成签到,获得积分10
2秒前
3秒前
4秒前
英姑应助Hyunstar采纳,获得10
4秒前
4秒前
wanci应助包子采纳,获得10
5秒前
无数完成签到,获得积分10
6秒前
土豆发布了新的文献求助10
7秒前
挽风完成签到,获得积分10
7秒前
铌123发布了新的文献求助10
9秒前
LLL发布了新的文献求助10
10秒前
11秒前
12秒前
科大鲨鱼发布了新的文献求助20
13秒前
13秒前
思源应助热情的凝云采纳,获得10
14秒前
qianmo完成签到 ,获得积分10
14秒前
爆米花应助落晨采纳,获得10
15秒前
包子发布了新的文献求助10
16秒前
sss2021发布了新的文献求助10
17秒前
酷炫小笼包完成签到 ,获得积分10
17秒前
17秒前
美文完成签到 ,获得积分10
18秒前
zx完成签到,获得积分10
18秒前
18秒前
酷波er应助羊大侠采纳,获得10
18秒前
19秒前
xin发布了新的文献求助10
20秒前
铌123完成签到,获得积分10
21秒前
21秒前
专注南烟关注了科研通微信公众号
22秒前
共享精神应助LLL采纳,获得10
22秒前
飞鱼z完成签到,获得积分10
23秒前
24秒前
25秒前
自由的舒克完成签到,获得积分20
25秒前
25秒前
天子山村的希望完成签到 ,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299957
求助须知:如何正确求助?哪些是违规求助? 2934810
关于积分的说明 8470613
捐赠科研通 2608363
什么是DOI,文献DOI怎么找? 1424166
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645611