LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:4
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changping应助Maqian采纳,获得10
刚刚
syalonyui完成签到,获得积分10
刚刚
桐桐应助婷婷的大宝剑采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
派大星完成签到 ,获得积分10
2秒前
仙峰水龙发布了新的文献求助10
2秒前
杨廷友发布了新的文献求助10
3秒前
3秒前
科研通AI5应助史杜旦腾采纳,获得10
3秒前
今后应助QIQ采纳,获得10
3秒前
h_hellow完成签到,获得积分10
3秒前
小海发布了新的文献求助10
4秒前
悦耳如彤完成签到,获得积分10
4秒前
不想晚睡给不想晚睡的求助进行了留言
5秒前
7秒前
kuku上岸给kuku上岸的求助进行了留言
7秒前
Sean完成签到,获得积分10
7秒前
冷酷丹翠发布了新的文献求助10
8秒前
悦耳如彤发布了新的文献求助10
8秒前
bkagyin应助早早采纳,获得10
8秒前
lym完成签到,获得积分10
9秒前
酷波er应助辛菜头采纳,获得30
9秒前
10秒前
TTDD完成签到 ,获得积分10
11秒前
11秒前
小闲发布了新的文献求助10
11秒前
13秒前
七七七七完成签到 ,获得积分10
13秒前
TITANIUMJ发布了新的文献求助10
15秒前
Ava应助wada酱采纳,获得10
16秒前
NexusExplorer应助不安冷之采纳,获得10
16秒前
17秒前
kangbushui关注了科研通微信公众号
17秒前
罗亚亚发布了新的文献求助10
18秒前
可研小冲发布了新的文献求助10
18秒前
中中完成签到,获得积分10
18秒前
农夫完成签到,获得积分0
19秒前
爆米花应助DeepLearning采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
Akim应助科研通管家采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125798
求助须知:如何正确求助?哪些是违规求助? 4329481
关于积分的说明 13491192
捐赠科研通 4164431
什么是DOI,文献DOI怎么找? 2282927
邀请新用户注册赠送积分活动 1283954
关于科研通互助平台的介绍 1223373