LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Langsam完成签到,获得积分10
刚刚
JamesPei应助嘻嘻采纳,获得10
刚刚
mo72090完成签到,获得积分10
刚刚
poison完成签到 ,获得积分10
1秒前
俏皮半烟发布了新的文献求助10
1秒前
机灵的鸣凤完成签到 ,获得积分10
2秒前
王wangWANG完成签到,获得积分10
2秒前
freemoe完成签到,获得积分20
2秒前
WJ完成签到,获得积分10
3秒前
李健应助侦察兵采纳,获得10
4秒前
无花果应助子川采纳,获得10
5秒前
5秒前
爆米花应助龙歪歪采纳,获得10
7秒前
8秒前
8秒前
xxxqqq完成签到,获得积分10
9秒前
虚拟的觅山完成签到,获得积分10
10秒前
slj完成签到,获得积分10
11秒前
科研爱好者完成签到 ,获得积分10
11秒前
12秒前
ywang发布了新的文献求助10
13秒前
koial完成签到 ,获得积分10
14秒前
苏卿应助小xy采纳,获得10
14秒前
侦察兵发布了新的文献求助10
16秒前
17秒前
yyyy发布了新的文献求助50
17秒前
皇帝的床帘完成签到,获得积分10
18秒前
GXY完成签到,获得积分10
20秒前
xiuwen发布了新的文献求助10
20秒前
啦啦啦完成签到,获得积分10
20秒前
Umwandlung完成签到,获得积分10
22秒前
gorgeousgaga完成签到,获得积分10
22秒前
23秒前
23秒前
科研通AI5应助ipeakkka采纳,获得10
24秒前
852应助章家炜采纳,获得10
25秒前
Gauss应助张小汉采纳,获得30
27秒前
嘻嘻发布了新的文献求助10
27秒前
杰哥完成签到 ,获得积分10
28秒前
Ava应助赵小可可可可采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849