亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LIDD-YOLO: a lightweight industrial defect detection network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 0161b5-0161b5 被引量:12
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30–60 frames per second (FPS), which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the you only look once (YOLO) series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called lightweight industrial defect detection network with improved YOLO architecture (LIDD-YOLO) for high-precision and real-time industrial defect detection. Firstly, we propose the large separable kernel spatial pyramid pooling (SPP) module, which is a SPP structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with dual convolutional (Dual Conv) kernel convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with ghost convolution and decoupled fully connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and printed circuit board (PCB) defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean average precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and floating point operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助qiuer7采纳,获得10
6秒前
10秒前
14秒前
lyhwkyjy应助null采纳,获得10
15秒前
Willow发布了新的文献求助10
18秒前
22秒前
29秒前
bbbccc发布了新的文献求助10
32秒前
Radisson完成签到,获得积分10
52秒前
1分钟前
xjynh发布了新的文献求助10
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
夏天的蜜雪冰城完成签到,获得积分10
1分钟前
可靠沛槐完成签到,获得积分10
1分钟前
1分钟前
xjynh发布了新的文献求助10
2分钟前
2分钟前
Hello应助xjynh采纳,获得10
2分钟前
mingjing完成签到 ,获得积分10
2分钟前
bbbccc发布了新的文献求助10
2分钟前
xxx完成签到,获得积分10
2分钟前
Augustines发布了新的文献求助10
2分钟前
2分钟前
麻麻薯完成签到 ,获得积分10
2分钟前
谐音梗别扣钱完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
yangjoy完成签到 ,获得积分10
3分钟前
科研通AI2S应助辛巴采纳,获得10
3分钟前
3分钟前
实验室应助内向雪旋采纳,获得200
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
小二郎应助bbbccc采纳,获得10
3分钟前
3分钟前
YuxinChen完成签到 ,获得积分10
3分钟前
4分钟前
赘婿应助jewelliang采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122912
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692