LIDD-YOLO: a lightweight industrial defect detection network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 0161b5-0161b5 被引量:12
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30–60 frames per second (FPS), which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the you only look once (YOLO) series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called lightweight industrial defect detection network with improved YOLO architecture (LIDD-YOLO) for high-precision and real-time industrial defect detection. Firstly, we propose the large separable kernel spatial pyramid pooling (SPP) module, which is a SPP structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with dual convolutional (Dual Conv) kernel convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with ghost convolution and decoupled fully connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and printed circuit board (PCB) defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean average precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and floating point operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助wenwenjlu采纳,获得10
刚刚
M张完成签到,获得积分10
刚刚
1秒前
1秒前
小羊闲庭信步完成签到,获得积分10
2秒前
田様应助pp采纳,获得30
2秒前
jasmine完成签到,获得积分10
2秒前
bkagyin应助li采纳,获得10
2秒前
是毛果芸香碱完成签到,获得积分10
2秒前
健壮的白桃完成签到,获得积分10
2秒前
jify完成签到,获得积分10
3秒前
yfe完成签到 ,获得积分10
3秒前
wu完成签到,获得积分10
3秒前
小晓小晓发布了新的文献求助20
3秒前
ZZZ完成签到,获得积分10
4秒前
Rain1god完成签到,获得积分10
4秒前
科研通AI2S应助小美美采纳,获得10
4秒前
Fngz3完成签到,获得积分20
5秒前
东西南北完成签到,获得积分10
5秒前
沙力VAN发布了新的文献求助10
5秒前
鹿梦发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助桐心心328采纳,获得30
6秒前
DT完成签到 ,获得积分10
6秒前
苏紫梗桔完成签到,获得积分10
7秒前
7秒前
wanci应助成就的醉香采纳,获得10
7秒前
zwj发布了新的文献求助10
7秒前
学海无涯完成签到,获得积分10
7秒前
robin_1217完成签到,获得积分10
7秒前
Leon Lai完成签到,获得积分0
7秒前
善学以致用应助Oasis采纳,获得10
7秒前
S先生完成签到,获得积分10
8秒前
顾矜应助qwer采纳,获得10
8秒前
科研之路完成签到,获得积分10
8秒前
铁臂阿童木完成签到,获得积分10
9秒前
9秒前
左耳钉应助春风细雨采纳,获得10
10秒前
Owen应助美少女战士采纳,获得10
10秒前
汉堡包应助LDoll采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645