LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:4
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liancheng发布了新的文献求助20
刚刚
小马完成签到,获得积分10
1秒前
1秒前
无机盐完成签到,获得积分10
1秒前
渣渣应助闲听花落采纳,获得10
1秒前
hsing发布了新的文献求助10
1秒前
3秒前
3秒前
小陆完成签到,获得积分10
3秒前
3秒前
Wangpengfei完成签到,获得积分10
3秒前
4秒前
菠萝吹雪完成签到,获得积分10
5秒前
善学以致用应助蓝桉采纳,获得10
6秒前
神勇玉米发布了新的文献求助10
6秒前
dubobo完成签到,获得积分10
7秒前
Jasper应助逆航采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Anhber应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
Tourist应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
南山发布了新的文献求助10
9秒前
pilgrim应助科研通管家采纳,获得10
9秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289776
求助须知:如何正确求助?哪些是违规求助? 4441239
关于积分的说明 13827000
捐赠科研通 4323723
什么是DOI,文献DOI怎么找? 2373289
邀请新用户注册赠送积分活动 1368718
关于科研通互助平台的介绍 1332650