Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts

情态动词 强度(物理) 地震学 地质学 地震模拟 物理 材料科学 光学 高分子化学
作者
S. Mostafa Mousavi,Marc Stogaitis,Tajinder Gadh,R. M. Allen,Alexei Barski,Robert van den Bosch,Patrick Robertson,Youngmin Cho,Nivetha Thiruverahan,Abhishek Raj
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:240 (2): 1281-1294
标识
DOI:10.1093/gji/ggae436
摘要

SUMMARY This paper presents a novel approach to extract scientifically valuable information about Earth's physical phenomena from unconventional sources, such as multimodal social media posts. Employing a state-of-the-art large language model (LLM), Gemini 1.5 Pro's, we estimate earthquake ground shaking intensity from these unstructured posts. The model's output, estimated intensity values, aligns well with independent observational data. Furthermore, our results suggest that LLMs, trained on vast internet data, may have developed a unique understanding of physical phenomena. Specifically, Google's Gemini models demonstrate a simplified understanding of the general relationship between earthquake magnitude, distance and intensity, accurately describing observational data even though it is not identical to established models. These findings raise intriguing questions about the extent to which Gemini's training has led to a broader understanding of the physical world and its phenomena. The ability of Generative AI models like Gemini to generate results consistent with established scientific knowledge highlights their potential to augment our understanding of complex physical phenomena like earthquakes. The flexible and effective approach proposed in this study holds immense potential for enriching our understanding of the impact of physical phenomena and improving resilience during natural disasters. This research is a significant step toward harnessing the power of social media and AI for natural disaster mitigation, opening new avenues for understanding the emerging capabilities of Generative AI and LLMs for scientific applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
tq发布了新的文献求助10
2秒前
4秒前
4秒前
司si完成签到 ,获得积分10
5秒前
可爱的函函应助林林林林采纳,获得10
6秒前
7秒前
9秒前
9秒前
粒粒完成签到,获得积分20
10秒前
10秒前
白日梦我发布了新的文献求助30
10秒前
11秒前
南山柴郎发布了新的文献求助10
11秒前
12秒前
12秒前
绵绵完成签到 ,获得积分10
12秒前
13秒前
靖哥哥发布了新的文献求助30
13秒前
AZN完成签到,获得积分10
14秒前
图图发布了新的文献求助10
14秒前
16秒前
TL发布了新的文献求助10
18秒前
chx2256120完成签到,获得积分10
19秒前
劲秉应助迷路的夏云采纳,获得10
19秒前
Toey发布了新的文献求助10
19秒前
开心的眼睛完成签到,获得积分10
20秒前
20秒前
21秒前
活力亦瑶发布了新的文献求助20
23秒前
23秒前
chen应助kiwi采纳,获得80
23秒前
yj1506837246发布了新的文献求助10
26秒前
26秒前
26秒前
无聊的寒梅完成签到,获得积分20
27秒前
复杂的天玉完成签到,获得积分10
27秒前
慕青应助xhh采纳,获得30
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503