Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts

情态动词 强度(物理) 地震学 地质学 地震模拟 物理 材料科学 光学 高分子化学
作者
S. Mostafa Mousavi,Marc Stogaitis,Tajinder Gadh,R. M. Allen,Alexei Barski,Robert van den Bosch,Patrick Robertson,Youngmin Cho,Nivetha Thiruverahan,Abhishek Raj
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:240 (2): 1281-1294
标识
DOI:10.1093/gji/ggae436
摘要

SUMMARY This paper presents a novel approach to extract scientifically valuable information about Earth's physical phenomena from unconventional sources, such as multimodal social media posts. Employing a state-of-the-art large language model (LLM), Gemini 1.5 Pro's, we estimate earthquake ground shaking intensity from these unstructured posts. The model's output, estimated intensity values, aligns well with independent observational data. Furthermore, our results suggest that LLMs, trained on vast internet data, may have developed a unique understanding of physical phenomena. Specifically, Google's Gemini models demonstrate a simplified understanding of the general relationship between earthquake magnitude, distance and intensity, accurately describing observational data even though it is not identical to established models. These findings raise intriguing questions about the extent to which Gemini's training has led to a broader understanding of the physical world and its phenomena. The ability of Generative AI models like Gemini to generate results consistent with established scientific knowledge highlights their potential to augment our understanding of complex physical phenomena like earthquakes. The flexible and effective approach proposed in this study holds immense potential for enriching our understanding of the impact of physical phenomena and improving resilience during natural disasters. This research is a significant step toward harnessing the power of social media and AI for natural disaster mitigation, opening new avenues for understanding the emerging capabilities of Generative AI and LLMs for scientific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffff完成签到,获得积分10
刚刚
刚刚
今后应助超级丸子采纳,获得10
刚刚
刚刚
xqq完成签到,获得积分10
刚刚
1秒前
Gaoge发布了新的文献求助10
1秒前
LiYong发布了新的文献求助10
1秒前
赵婧发布了新的文献求助10
2秒前
tu完成签到 ,获得积分10
4秒前
小手冰凉完成签到,获得积分10
4秒前
七人七发布了新的文献求助30
4秒前
4秒前
mimiC完成签到,获得积分20
6秒前
Bowen发布了新的文献求助10
6秒前
6秒前
6秒前
Debra发布了新的文献求助10
7秒前
风中冰香应助ZHQ采纳,获得10
7秒前
zh完成签到,获得积分10
8秒前
8秒前
LL发布了新的文献求助10
8秒前
Frida发布了新的文献求助10
9秒前
9秒前
科研通AI6应助玻尿酸采纳,获得10
10秒前
淋湿巴黎完成签到,获得积分10
11秒前
泠泠泠萘发布了新的文献求助10
11秒前
爆米花应助wjy321采纳,获得10
11秒前
11秒前
zino完成签到,获得积分10
12秒前
K. G.完成签到,获得积分10
12秒前
Q.L完成签到,获得积分20
12秒前
溜溜发布了新的文献求助10
12秒前
66发布了新的文献求助33
13秒前
虚幻念寒发布了新的文献求助10
13秒前
MechaniKer完成签到,获得积分10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107