Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts

情态动词 强度(物理) 地震学 地质学 地震模拟 物理 材料科学 光学 高分子化学
作者
S. Mostafa Mousavi,Marc Stogaitis,Tajinder Gadh,R. M. Allen,Alexei Barski,Robert van den Bosch,Patrick Robertson,Youngmin Cho,Nivetha Thiruverahan,Abhishek Raj
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:240 (2): 1281-1294
标识
DOI:10.1093/gji/ggae436
摘要

SUMMARY This paper presents a novel approach to extract scientifically valuable information about Earth's physical phenomena from unconventional sources, such as multimodal social media posts. Employing a state-of-the-art large language model (LLM), Gemini 1.5 Pro's, we estimate earthquake ground shaking intensity from these unstructured posts. The model's output, estimated intensity values, aligns well with independent observational data. Furthermore, our results suggest that LLMs, trained on vast internet data, may have developed a unique understanding of physical phenomena. Specifically, Google's Gemini models demonstrate a simplified understanding of the general relationship between earthquake magnitude, distance and intensity, accurately describing observational data even though it is not identical to established models. These findings raise intriguing questions about the extent to which Gemini's training has led to a broader understanding of the physical world and its phenomena. The ability of Generative AI models like Gemini to generate results consistent with established scientific knowledge highlights their potential to augment our understanding of complex physical phenomena like earthquakes. The flexible and effective approach proposed in this study holds immense potential for enriching our understanding of the impact of physical phenomena and improving resilience during natural disasters. This research is a significant step toward harnessing the power of social media and AI for natural disaster mitigation, opening new avenues for understanding the emerging capabilities of Generative AI and LLMs for scientific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得30
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
爆米花应助科研通管家采纳,获得20
刚刚
1秒前
1秒前
1秒前
1秒前
hiyuz发布了新的文献求助10
1秒前
要减肥的莛完成签到,获得积分20
1秒前
2秒前
3秒前
我是老大应助特昂唐采纳,获得10
3秒前
4秒前
FashionBoy应助受伤的豌豆采纳,获得10
4秒前
慕青应助lq8996采纳,获得10
4秒前
5秒前
小刘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
你真是那个啊完成签到,获得积分10
5秒前
abu发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
sean118完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
曼凡发布了新的文献求助10
9秒前
若兰完成签到,获得积分10
9秒前
端己发布了新的文献求助10
10秒前
脑洞疼应助晶晶妹妹采纳,获得10
10秒前
10秒前
邓桂灿发布了新的文献求助10
11秒前
安清发布了新的文献求助10
11秒前
GG发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113