Detection of Periodontal Bone Loss and Periodontitis from 2D Dental Radiographs via Machine Learning and Deep Learning: Systematic Review Employing APPRAISE-AI and Meta-analysis

医学 射线照相术 牙周炎 牙科 荟萃分析 牙槽 梅德林 质量评定 系统回顾 牙周检查 口腔正畸科 内科学 外科 病理 外部质量评估 政治学 法学
作者
Yahia H. Khubrani,David W. Thomas,Paddy J. Slator,Richard White,D. J. J. Farnell
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
标识
DOI:10.1093/dmfr/twae070
摘要

Abstract Objectives Periodontitis is a serious periodontal infection that damages the soft tissues and bone around teeth and is linked to systemic conditions. Accurate diagnosis and staging, complemented by radiographic evaluation, are vital. This systematic review (PROSPERO ID: CRD42023480552) explores Artificial Intelligence (AI) applications in assessing alveolar bone loss and periodontitis on dental panoramic and periapical radiographs Methods Five databases (Medline, Embase, Scopus, Web of Science, and Cochran’s Library) were searched from January 1990 to January 2024. Keywords related to ‘artificial intelligence’, ‘Periodontal bone loss/Periodontitis’, and ‘Dental radiographs’ were used. Risk of bias and quality assessment of included papers were performed according to the APPRAISE-AI Tool for Quantitative Evaluation of AI Studies for Clinical Decision Support. Meta analysis was carried out via the “metaprop” command in R V3.6.1. Results Thirty articles were included in the review, where ten papers were eligible for meta-analysis. Based on quality scores from the APPRAISE-AI critical appraisal tool of the 30 papers, 1 (3.3%) were of very low quality (score < 40), 3 (10.0%) were of low quality (40 ≤ score < 50), 19 (63.3%) were of intermediate quality (50 ≤ score < 60), and 7 (23.3%) were of high quality (60 ≤ score < 80). No papers were of very high quality (score ≥ 80). Meta-analysis indicated that model performance was generally good, e.g.: sensitivity 87% (95% CI: 80% to 93%), specificity 76% (95% CI: 69% to 81%), and accuracy 84% (95% CI: 75% to 91%). Conclusion Deep Learning shows much promise in evaluating periodontal bone levels, although there was some variation in performance. AI studies can lack transparency and reporting standards could be improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助LKT采纳,获得10
1秒前
8秒前
LKT发布了新的文献求助10
13秒前
wzy5508完成签到 ,获得积分10
14秒前
Alger发布了新的文献求助30
17秒前
隐形曼青应助zhuwenjian采纳,获得10
18秒前
LKT完成签到,获得积分10
18秒前
24秒前
savior完成签到 ,获得积分10
27秒前
Xiaoxiao完成签到,获得积分20
28秒前
嵐嵐发布了新的文献求助10
29秒前
等待的凝芙完成签到 ,获得积分10
33秒前
37秒前
37秒前
noah完成签到,获得积分20
38秒前
1364135702完成签到 ,获得积分10
39秒前
一叶舟完成签到 ,获得积分10
41秒前
Junlei完成签到,获得积分10
42秒前
Orange应助noah采纳,获得10
42秒前
zhuwenjian发布了新的文献求助10
42秒前
嵐嵐完成签到,获得积分10
43秒前
瞒_发布了新的文献求助10
43秒前
JUNJIU完成签到 ,获得积分10
49秒前
马海鑫完成签到 ,获得积分10
50秒前
50秒前
风中的静珊完成签到 ,获得积分10
50秒前
完美世界应助annnnnn采纳,获得10
57秒前
火星上忆寒完成签到,获得积分10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
asd应助科研通管家采纳,获得50
1分钟前
cannon8应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
genomed应助科研通管家采纳,获得10
1分钟前
研友_ZGRvon完成签到,获得积分0
1分钟前
1分钟前
yulian完成签到,获得积分10
1分钟前
呆歪歪发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Metal Additive Manufacturing for Propulsion Applications 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3367752
求助须知:如何正确求助?哪些是违规求助? 2987150
关于积分的说明 8726172
捐赠科研通 2669724
什么是DOI,文献DOI怎么找? 1462446
科研通“疑难数据库(出版商)”最低求助积分说明 676839
邀请新用户注册赠送积分活动 668008