Mechanisms of mixed slurry flow of deep-sea hydrate exploitation

物理 泥浆 流量(数学) 水合物 笼状水合物 机械 热力学 有机化学 化学
作者
Yang Tang,Jiaqing Xu,Shiyan Zhu,Qiang Fu,Guorong Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:1
标识
DOI:10.1063/5.0246110
摘要

Marine gas hydrate test production faces several challenges, including low hydrate yield, severe sand sedimentation under jet-breaking conditions, and minimal or even absent fluid returns. To address these challenges and enhance gas hydrate production while maximizing the value of extraction equipment, a layered control engineering strategy is proposed. This strategy is based on the integrated vertical development approach encompassing natural gas hydrates, shallow gas, and natural gas reservoirs. Using a gas-liquid two-phase flow theory and considering both the self-dissociation behavior of hydrates and the effective transport conditions of solid-phase particles, a mathematical model for slurry lifting across different extraction stages was established. The model was solved and validated, ultimately producing a process flow diagram for natural-assisted lifting of hydrate slurry. During the horizontal drilling phase, effective transport of solid-phase particles can be achieved without additional gas injection when the drilling fluid flow rate exceeds 13 L/s. However, gas injection can be used to further accelerate solid particle transport, with an injection range of 0 to 67 L/s, depending on the drilling fluid input. During the hydrate fracturing and recovery stage, solid particle transport can be effectively maintained without additional gas injection when the fracturing flow rate is between 49 and 55 L/s. Within this range, gas injection can be adjusted from 0 to 129 L/s to meet the requirements of hydrate slurry flow. This research provides a reference for improving gas hydrate extraction yield, accelerating early commercialization of hydrate exploitation, and supporting China's “dual carbon” strategic goals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
scscsd完成签到,获得积分10
刚刚
明亮忆秋发布了新的文献求助10
刚刚
心外科医生完成签到,获得积分10
刚刚
刚刚
科研通AI5应助快乐的钥匙采纳,获得10
刚刚
ttxuexi发布了新的文献求助10
刚刚
刚刚
Singularity应助科研达人采纳,获得10
1秒前
VDC应助温暖的数据线采纳,获得30
1秒前
2秒前
2秒前
2秒前
Jupiter发布了新的文献求助20
3秒前
4秒前
4秒前
5秒前
5秒前
xixi发布了新的文献求助10
5秒前
糊涂生活糊涂过完成签到 ,获得积分10
6秒前
6秒前
萤火发布了新的文献求助10
7秒前
coco完成签到,获得积分10
7秒前
7秒前
7秒前
热可可728完成签到,获得积分10
7秒前
7秒前
冬虫草发布了新的文献求助10
8秒前
畅畅发布了新的文献求助30
8秒前
9秒前
张肥肥完成签到 ,获得积分10
9秒前
Orange应助飘逸踏歌采纳,获得10
9秒前
9秒前
10秒前
11秒前
莉莉发布了新的文献求助10
11秒前
大树完成签到,获得积分10
12秒前
13秒前
Dr.Zheng完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320