血管紧张素II
血管平滑肌
血管紧张素Ⅱ受体1型
生物
表型
过渡(遗传学)
内科学
内分泌学
细胞生物学
受体
基因
医学
遗传学
平滑肌
作者
Xi Zhang,Bingjie Li,Ying-shuo Yan,Fei Sun,Suli Zhang,Meili Wang,Huirong Liu
标识
DOI:10.1016/j.bcp.2023.115977
摘要
Phenotypic transition of vascular smooth muscle cells (VSMCs) is an early event in the onset and progression of several cardiovascular diseases. As an important mediator of the renin-angiotensin system (RAS), activation of the angiotensin II type 1 receptor (AT1R) induces phenotypic transition of VSMCs. AT1R autoantibodies (AT1-AAs), which are agonistic autoantibodies of AT1R, have been detected in the sera of patients with a variety of cardiovascular diseases associated with phenotypic transition. However, the effect of AT1-AA on phenotypic transition is currently unknown. In this study, AT1-AA-positive rat model was established by active immunization to detect markers of VSMCs phenotypic transition. The results showed that AT1-AA-positive rats showed phenotypic transition of VSMCs, which was evidenced by the decrease of contractile markers, while the increase of synthetic markers in the thoracic aorta. However, in AT1-AA-positive AT1R knockout rats, the phenotypic transition-related proteins were not altered. In vitro, after stimulating human aortic smooth muscle cells with AT1-AA for 48 h, 2′-5′ oligoadenylate synthase 2 (OAS2) was identified as the key differentially expressed gene by RNA sequencing and bioinformatics analysis. Furthermore, high expression of OAS2 was found in aorta of AT1-AA-positive rats; knockdown of OAS2 by siRNA can reverse the phenotypic transition of VSMCs induced by AT1-AA. In summary, this study suggests that AT1-AA can promote phenotypic transition of VSMCs through AT1R-OAS2 pathway, and OAS2 might serve as a potential therapeutic target to prevent pathological phenotypic transition of smooth muscle cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI