Accelerating computational materials discovery with artificial intelligence and cloud high-performance computing: from large-scale screening to experimental validation

云计算 瓶颈 计算机科学 药物发现 计算模型 比例(比率) 超级计算机 数据科学 人工智能 生物信息学 物理 量子力学 生物 嵌入式系统 操作系统
作者
Chi Chen,Dan Thien Nguyen,Shannon Lee,Nathan Baker,Ajay Karakoti,Linda Lauw,Craig Owen,Karl T. Mueller,Brian A. Bilodeau,Vijayakumar Murugesan,Matthias Troyer
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2401.04070
摘要

High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of large-scale computational discovery carried through experimental validation remain scarce, especially for materials with product applicability. Here we demonstrate how this vision became reality by first combining state-of-the-art artificial intelligence (AI) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. By employing around one thousand virtual machines (VMs) in the cloud, this process took less than 80 hours. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the Na$_x$Li$_{3-x}$YCl$_6$ ($0 < x < 3$) series, demonstrating the potential of these compounds to serve as solid electrolytes. Additional candidate materials that are currently under experimental investigation could offer more examples of the computational discovery of new phases of Li- and Na-conducting solid electrolytes. We believe that this unprecedented approach of synergistically integrating AI models and cloud HPC not only accelerates materials discovery but also showcases the potency of AI-guided experimentation in unlocking transformative scientific breakthroughs with real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SCISSH完成签到 ,获得积分10
刚刚
FEI发布了新的文献求助10
1秒前
科研通AI5应助奔奔采纳,获得10
2秒前
星辰大海应助八八采纳,获得20
2秒前
gaga发布了新的文献求助10
2秒前
木子加y发布了新的文献求助10
2秒前
大大泡泡完成签到,获得积分10
3秒前
852应助zhui采纳,获得10
4秒前
芒果发布了新的文献求助10
4秒前
5秒前
前百年253完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
xiaoguai完成签到 ,获得积分10
7秒前
甜蜜晓绿发布了新的文献求助10
9秒前
9秒前
Bruce发布了新的文献求助10
9秒前
10秒前
10秒前
MYhang完成签到,获得积分10
10秒前
wxd发布了新的文献求助10
12秒前
12秒前
哈哈发布了新的文献求助10
13秒前
13秒前
西哈哈发布了新的文献求助10
13秒前
科研通AI5应助lili采纳,获得10
13秒前
郑嘻嘻完成签到,获得积分10
13秒前
13秒前
FEI完成签到,获得积分20
13秒前
15秒前
英姑应助顺利的乐枫采纳,获得10
15秒前
15秒前
15秒前
16秒前
木子加y完成签到 ,获得积分10
17秒前
小蘑菇应助Sally采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794