Accelerating computational materials discovery with artificial intelligence and cloud high-performance computing: from large-scale screening to experimental validation

云计算 瓶颈 计算机科学 药物发现 计算模型 比例(比率) 超级计算机 数据科学 人工智能 生物信息学 物理 量子力学 生物 嵌入式系统 操作系统
作者
Chi Chen,Dan Thien Nguyen,Shannon Lee,Nathan Baker,Ajay Karakoti,Linda Lauw,David Owen,Karl T. Mueller,Brian A. Bilodeau,Vijayakumar Murugesan,Matthias Troyer
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2401.04070
摘要

High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of large-scale computational discovery carried through experimental validation remain scarce, especially for materials with product applicability. Here we demonstrate how this vision became reality by first combining state-of-the-art artificial intelligence (AI) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. By employing around one thousand virtual machines (VMs) in the cloud, this process took less than 80 hours. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the Na$_x$Li$_{3-x}$YCl$_6$ ($0 < x < 3$) series, demonstrating the potential of these compounds to serve as solid electrolytes. Additional candidate materials that are currently under experimental investigation could offer more examples of the computational discovery of new phases of Li- and Na-conducting solid electrolytes. We believe that this unprecedented approach of synergistically integrating AI models and cloud HPC not only accelerates materials discovery but also showcases the potency of AI-guided experimentation in unlocking transformative scientific breakthroughs with real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yara.H发布了新的文献求助10
1秒前
yyy0820完成签到,获得积分10
2秒前
不配.应助lishi采纳,获得20
2秒前
彭于晏应助拼搏靖巧采纳,获得10
2秒前
lgh发布了新的文献求助10
2秒前
负责丹亦发布了新的文献求助10
3秒前
3秒前
刻苦耳机发布了新的文献求助10
4秒前
Chrischelsea发布了新的文献求助10
4秒前
话家发布了新的文献求助10
4秒前
5秒前
上官若男应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得30
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
研友_Zl1w68发布了新的文献求助10
8秒前
赵姐姐发布了新的文献求助10
8秒前
8秒前
9秒前
Corilla发布了新的文献求助10
10秒前
10秒前
Elysia发布了新的文献求助10
11秒前
13秒前
糖糖糖完成签到,获得积分10
13秒前
领导范儿应助1234采纳,获得10
13秒前
小蘑菇应助OrgPel采纳,获得10
14秒前
包子姐姐要努力鸭完成签到,获得积分20
14秒前
兰彻完成签到,获得积分10
14秒前
15秒前
Molly发布了新的文献求助10
16秒前
houxufeng完成签到 ,获得积分10
16秒前
Air完成签到,获得积分10
17秒前
Zyzpkilly完成签到,获得积分10
18秒前
康康发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663