Accelerating computational materials discovery with artificial intelligence and cloud high-performance computing: from large-scale screening to experimental validation

云计算 瓶颈 计算机科学 药物发现 计算模型 比例(比率) 超级计算机 数据科学 人工智能 生物信息学 物理 量子力学 生物 嵌入式系统 操作系统
作者
Chi Chen,Dan Thien Nguyen,Shannon Lee,Nathan Baker,Ajay Karakoti,Linda Lauw,Craig Owen,Karl T. Mueller,Brian A. Bilodeau,Vijayakumar Murugesan,Matthias Troyer
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2401.04070
摘要

High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of large-scale computational discovery carried through experimental validation remain scarce, especially for materials with product applicability. Here we demonstrate how this vision became reality by first combining state-of-the-art artificial intelligence (AI) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. By employing around one thousand virtual machines (VMs) in the cloud, this process took less than 80 hours. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the Na$_x$Li$_{3-x}$YCl$_6$ ($0 < x < 3$) series, demonstrating the potential of these compounds to serve as solid electrolytes. Additional candidate materials that are currently under experimental investigation could offer more examples of the computational discovery of new phases of Li- and Na-conducting solid electrolytes. We believe that this unprecedented approach of synergistically integrating AI models and cloud HPC not only accelerates materials discovery but also showcases the potency of AI-guided experimentation in unlocking transformative scientific breakthroughs with real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
股价发布了新的文献求助10
刚刚
Keyan完成签到,获得积分10
刚刚
刚刚
简单的冰真完成签到,获得积分10
1秒前
1秒前
007发布了新的文献求助10
2秒前
无私鹏涛完成签到,获得积分10
2秒前
2秒前
拼搏迎梦完成签到,获得积分10
2秒前
2秒前
结实的蘑菇完成签到 ,获得积分10
3秒前
wxy完成签到,获得积分10
3秒前
3秒前
举个栗子8完成签到 ,获得积分20
5秒前
Anna发布了新的文献求助10
5秒前
凶狠的雁芙完成签到,获得积分10
5秒前
斯文远望发布了新的文献求助10
6秒前
行走的车发布了新的文献求助10
7秒前
合适的灵枫完成签到,获得积分10
7秒前
0814d发布了新的文献求助10
7秒前
曹静怡完成签到,获得积分20
7秒前
7秒前
听话的寄灵完成签到,获得积分10
8秒前
8秒前
洁净怜寒完成签到,获得积分10
8秒前
黎雪芳完成签到,获得积分10
8秒前
ssss发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助Zirong采纳,获得10
9秒前
10秒前
朱丁丁完成签到,获得积分20
10秒前
小马甲应助股价采纳,获得10
10秒前
平常康完成签到,获得积分10
10秒前
只如初完成签到,获得积分10
10秒前
11秒前
12秒前
嗯嗯关注了科研通微信公众号
12秒前
震动的友琴完成签到,获得积分10
12秒前
淳于友琴发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904