Accelerating computational materials discovery with artificial intelligence and cloud high-performance computing: from large-scale screening to experimental validation

云计算 瓶颈 计算机科学 药物发现 计算模型 比例(比率) 超级计算机 数据科学 人工智能 生物信息学 物理 量子力学 生物 嵌入式系统 操作系统
作者
Chi Chen,Dan Thien Nguyen,Shannon Lee,Nathan Baker,Ajay Karakoti,Linda Lauw,Craig Owen,Karl T. Mueller,Brian A. Bilodeau,Vijayakumar Murugesan,Matthias Troyer
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2401.04070
摘要

High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of large-scale computational discovery carried through experimental validation remain scarce, especially for materials with product applicability. Here we demonstrate how this vision became reality by first combining state-of-the-art artificial intelligence (AI) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. By employing around one thousand virtual machines (VMs) in the cloud, this process took less than 80 hours. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the Na$_x$Li$_{3-x}$YCl$_6$ ($0 < x < 3$) series, demonstrating the potential of these compounds to serve as solid electrolytes. Additional candidate materials that are currently under experimental investigation could offer more examples of the computational discovery of new phases of Li- and Na-conducting solid electrolytes. We believe that this unprecedented approach of synergistically integrating AI models and cloud HPC not only accelerates materials discovery but also showcases the potency of AI-guided experimentation in unlocking transformative scientific breakthroughs with real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxyy应助Dora采纳,获得10
刚刚
刚刚
邹逢源完成签到,获得积分10
1秒前
笨笨的乐驹完成签到,获得积分10
1秒前
陌上之心发布了新的文献求助10
1秒前
田様应助新八采纳,获得10
1秒前
1秒前
动人的铃铛完成签到,获得积分10
2秒前
2秒前
轻松金毛发布了新的文献求助10
2秒前
2秒前
朱莉发布了新的文献求助20
2秒前
隐形的巴豆完成签到,获得积分10
2秒前
谭耀给谭耀的求助进行了留言
3秒前
QQ发布了新的文献求助10
3秒前
kai发布了新的文献求助10
4秒前
jenningseastera应助sweat采纳,获得10
4秒前
ljforever完成签到,获得积分10
4秒前
4秒前
4秒前
zy发布了新的文献求助10
5秒前
5秒前
活泼水桃发布了新的文献求助10
5秒前
喜洋洋完成签到,获得积分10
5秒前
cst发布了新的文献求助10
5秒前
胡沐恬完成签到,获得积分10
6秒前
6秒前
2021完成签到 ,获得积分10
6秒前
jun发布了新的文献求助10
6秒前
华仔应助大白不白采纳,获得10
7秒前
ddddansu完成签到,获得积分20
8秒前
8秒前
8秒前
badada完成签到,获得积分10
8秒前
鱼香丸子应助杨wen采纳,获得20
8秒前
智勇双全发布了新的文献求助10
8秒前
科研通AI5应助weilanhaian采纳,获得10
9秒前
513完成签到,获得积分10
9秒前
DrPanda完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4616113
求助须知:如何正确求助?哪些是违规求助? 4019457
关于积分的说明 12442484
捐赠科研通 3702637
什么是DOI,文献DOI怎么找? 2041737
邀请新用户注册赠送积分活动 1074341
科研通“疑难数据库(出版商)”最低求助积分说明 957952