Classifying promoters by interpreting the hidden information of DNA sequences for disease prediction in clinical laboratories using Gaussian decision boundary estimation

发起人 碱基对 DNA 遗传学 基因 生物 DNA结合位点 抄写(语言学) DNA测序 计算生物学 基因表达 语言学 哲学
作者
S. Pradeepa,Niveda Gaspar,S. Vimal,P. Subbulakshmi,Ahmed Alkhayyat,M. Kaliappan
出处
期刊:Intelligent Decision Technologies [IOS Press]
卷期号:18 (1): 613-631
标识
DOI:10.3233/idt-230283
摘要

A promoter is a brief stretch of DNA (100–1,000 bp) where RNA polymerase starts to transcribe a gene. A DNA (Deoxyribonucleic Acid) base pair is a fundamental unit of DNA structure and represents the pairing of two complementary nucleotide bases within the DNA double helix. The four DNA nucleotide bases are adenine (A), thymine (T), cytosine (C), and guanine (G). DNA base pairs are the building blocks of the DNA molecule, and their complementary pairing is central to the storage and transmission of genetic information in all living organisms. Normally, a promoter is found at the 5′ end of the transcription initiation site or immediately upstream. Numerous human disorders, particularly diabetes, cancer, and Huntington’s disease, have been shown to have DNA promoter as their root cause. The scientific community has long been interested in learning crucial information about protein-coding genes. Finding the promoters is therefore the first step in finding genes in DNA sequences. The scientific world has always been attracted by the effort to glean crucial knowledge about protein-coding genes. Consequently, identifying promoters has emerged as an intriguing challenge that has caught the interest of numerous researchers in the field of bioinformatics. We proposed Gaussian Decision Boundary Estimation in machine learning models to detect transcription start sites (promoters) in the DNA sequences of a common bacteria, Escherichia coli. The best features are identified through a score-based function to select relevant nucleotides that are directly responsible for promoter recognition, in order maximise the models’ performance. The Gaussian Decision Boundary Estimation based support-vector-machine model is trained with these features and finds the best hyperplane that separates the data into different classes. Throughout this study, promoter regions could be identified with high accuracy 99.9% which is better compared to other state of art algorithms. The comparison of machine learning classification models is another major emphasis of this paper in order to identify the model that most accurately predicts DNA sequence promoters. It provides analysis for further biological research as well as precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助佳佳采纳,获得10
刚刚
11完成签到,获得积分10
1秒前
1秒前
科研通AI5应助传统的唯雪采纳,获得10
2秒前
活泼学生完成签到,获得积分10
3秒前
Ava应助lwww采纳,获得10
3秒前
万能图书馆应助凯蒂采纳,获得10
3秒前
任性静祝发布了新的文献求助10
5秒前
meng完成签到,获得积分10
5秒前
lyx1997发布了新的文献求助20
5秒前
所所应助Strickland采纳,获得10
7秒前
书白完成签到,获得积分10
7秒前
CipherSage应助112采纳,获得10
8秒前
迟大猫举报闪闪的冷风求助涉嫌违规
9秒前
Orange应助吴彬采纳,获得10
10秒前
sunguoyi完成签到,获得积分10
12秒前
我是老大应助木叶采纳,获得10
13秒前
何仲秋冲冲冲完成签到,获得积分10
14秒前
科研通AI5应助ywindm采纳,获得30
14秒前
图喵喵完成签到,获得积分10
14秒前
15秒前
15秒前
科目三应助cjk采纳,获得10
16秒前
NULIFENDOU完成签到,获得积分10
17秒前
17秒前
枫叶-ZqqC发布了新的文献求助50
17秒前
Swiftie发布了新的文献求助10
18秒前
112完成签到,获得积分20
19秒前
搜集达人应助发发采纳,获得10
20秒前
Lazarus_x发布了新的文献求助10
20秒前
白方明发布了新的文献求助10
21秒前
21秒前
21秒前
23秒前
大东子完成签到,获得积分10
23秒前
蔡扬鹏完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084