3D compact form as the key role in the cooling effect of greenspace landscape pattern

钥匙(锁) 生态学 环境科学 地理 环境资源管理 生物
作者
Yujia Bai,Kai Wang,Yin Ren,Mei Li,Ranran Ji,Xian Wu,Han Yan,Tao Lin,Guoqin Zhang,Xinyu Zhou,Huifang Mei,Hong Ye
出处
期刊:Ecological Indicators [Elsevier]
卷期号:160: 111776-111776 被引量:1
标识
DOI:10.1016/j.ecolind.2024.111776
摘要

Climate change and urbanization have led to an increase in extreme weather and urban heat islands. Green space can help regulate the thermal environment, but previous studies have focused on two-dimensional (2D) indicators, neglecting the intrinsic three-dimensional (3D) characteristics of green space. Therefore, we developed a set of 3D landscape indices to define green space configurations, including characteristic, shape, and compactness, based on landscape ecology and the law of universal gravity, and quantify its benefits for the thermal environment. We collected high-resolution LiDAR point cloud data from Siming Mountain, China, to calculate both 2D and 3D green space landscape patterns and investigate their effects on land surface temperature (LST) using correlation analysis and spatial statistical methods. Our study revealed: (1) All the selected green space landscape indices had a significant negative effect on LST, with a non-linear enhancement when 2D or 3D indices interacted. (2) The 3D compactness index (VCI) could be the most reliable and concise index to explain LST spatial distribution. Adjusting the VCI allowed us to reduce the LST of the study area by up to 3.71 °C in summer and 2.14 °C in winter. However, an overly compact 3D green space above the threshold could lead to higher LST in summer. (3) Terrain had a weaker effect on LST in winter than in summer, and it showed a stronger interaction with the 3D form of green space than with the 2D form. We concluded that the 3D compact form of green space can be utilized as the key factor in maximizing its cooling effect, by taking into account both terrain factors and seasonal variations. Our study can shed light on the scientific planning of green space aiming at optimizing the thermal environment for more sustainable forest and urban habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXL完成签到,获得积分10
1秒前
我是老大应助白衣修身采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
5秒前
5秒前
5秒前
感动的紊发布了新的文献求助10
7秒前
xinohei完成签到,获得积分10
7秒前
9秒前
ZLY驳回了行隐应助
9秒前
10秒前
10秒前
10秒前
汐汐发布了新的文献求助10
10秒前
shunshun51213发布了新的文献求助30
11秒前
cc关闭了cc文献求助
12秒前
xun驳回了大模型应助
13秒前
Owen应助Leeny采纳,获得10
13秒前
childheart发布了新的文献求助10
13秒前
zzm完成签到,获得积分10
13秒前
乐乐应助Leo采纳,获得10
13秒前
14秒前
顺利雨安发布了新的文献求助10
15秒前
慕青应助瓜瓜瓜咕采纳,获得10
15秒前
默默雨竹发布了新的文献求助20
15秒前
希望天下0贩的0应助kiwi采纳,获得10
16秒前
刘柳完成签到 ,获得积分10
16秒前
16秒前
旦旦发布了新的文献求助10
16秒前
17秒前
zzm发布了新的文献求助10
17秒前
白鸽应助peter采纳,获得10
18秒前
拓跋从阳发布了新的文献求助10
19秒前
科研通AI2S应助啦啦啦采纳,获得10
20秒前
pluto应助俊逸的大树采纳,获得10
21秒前
Ygy完成签到,获得积分10
21秒前
LEMONS完成签到 ,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870