Lightweight Semantic Segmentation Network for Semantic Scene Understanding on Low-Compute Devices

计算机科学 卷积(计算机科学) 水准点(测量) 分割 集合(抽象数据类型) 机器人 卷积神经网络 人工智能 移动机器人 人工神经网络 试验装置 语义学(计算机科学) 算法 程序设计语言 大地测量学 地理
作者
Hojun Son,James D. Weiland
标识
DOI:10.1109/iros55552.2023.10342110
摘要

Semantic scene understanding is beneficial for mobile robots. Semantic information obtained through onboard cameras can improve robots' navigation performance. However, obtaining semantic information on small mobile robots with constrained power and computation resources is challenging. We propose a new lightweight convolution neural network comparable to previous semantic segmentation algorithms for mobile applications. Our network achieved 73.06% on the Cityscapes validation set and 71.8% on the Cityscapes test set. Our model runs at 116 fps with $\mathbf{1024\mathrm{x}2048}$ , 172 fps with $1024\mathrm{x}1024$ , and 175 fps with $720\mathrm{x}960$ on NVIDIA GTX 1080. We analyze a model size, which is defined as the summation of the number of floating operations and the number of parameters. The smaller model size enables tiny mobile robot systems that should operate multiple tasks simultaneously to work efficiently. Our model has the smallest model size compared to the real-time semantic segmentation convolution neural networks ranked on Cityscapes real-time benchmark and other high performing, lightweight convolution neural networks. On the Camvid test set, our model achieved a mIoU of 73.29% with Cityscapes pre-training, which outperformed the accuracy of other lightweight convolution neural networks. For mobile applicability, we measured frame-per-second on different low-compute devices. Our model operates 35 fps on Jetson Xavier AGX, 21 FPS on Jetson Xavier NX, and 14 FPS on a ROS ASUS gaming phone. $1024\mathrm{x}2048$ resolution is used for the Jetson devices, and $512\mathrm{x}512$ size is utilized for the measurement on the phone. Our network did not use extra datasets such as ImageNet, Coarse Cityscapes, and Mapillary. Additionally, we did not use TensorRT to achieve fast inference speed. Compared to other real-time and lightweight CNNs, our model achieved significantly more efficiency while balancing accuracy, inference speed, and model size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HMONEY应助长度2到采纳,获得10
1秒前
思源应助正直尔白采纳,获得10
3秒前
loosewires完成签到,获得积分10
4秒前
Wink14551发布了新的文献求助10
4秒前
wy完成签到 ,获得积分10
5秒前
8秒前
10秒前
勤奋尔冬发布了新的文献求助10
10秒前
深情安青应助祎祎采纳,获得10
11秒前
sandyleung完成签到,获得积分10
11秒前
12秒前
surain发布了新的文献求助10
13秒前
oceanic发布了新的文献求助10
15秒前
stephen_wang完成签到,获得积分10
15秒前
体贴的曼凝完成签到,获得积分10
16秒前
qq发布了新的文献求助10
18秒前
lcy完成签到 ,获得积分10
18秒前
21秒前
无花果应助飞飞飞采纳,获得10
23秒前
高高浩然完成签到,获得积分10
24秒前
打打应助婷婷采纳,获得10
24秒前
roblllling发布了新的文献求助10
25秒前
青阳完成签到,获得积分10
28秒前
君君完成签到,获得积分10
29秒前
30秒前
30秒前
严仁杰发布了新的文献求助50
31秒前
LLL完成签到,获得积分10
31秒前
32秒前
脑洞疼应助Panchael采纳,获得10
33秒前
chen完成签到,获得积分10
33秒前
迷人世开完成签到,获得积分10
35秒前
飞飞飞发布了新的文献求助10
35秒前
luermei发布了新的文献求助10
36秒前
打打应助君子不器采纳,获得30
36秒前
biubiubiu发布了新的文献求助10
37秒前
roblllling完成签到,获得积分10
37秒前
蕃茄可乐完成签到,获得积分10
39秒前
科研通AI5应助YMM采纳,获得10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740489
求助须知:如何正确求助?哪些是违规求助? 3283290
关于积分的说明 10034940
捐赠科研通 3000165
什么是DOI,文献DOI怎么找? 1646430
邀请新用户注册赠送积分活动 783550
科研通“疑难数据库(出版商)”最低求助积分说明 750411