Generative Artificial Intelligence Acceptance Scale: A Validity and Reliability Study

克朗巴赫阿尔法 验证性因素分析 心理学 可靠性(半导体) 比例(比率) 探索性因素分析 期望理论 样品(材料) 内容有效性 判别效度 统计 人工智能 应用心理学 计算机科学 结构方程建模 社会心理学 心理测量学 数学 临床心理学 功率(物理) 物理 化学 量子力学 色谱法 内部一致性
作者
Fatma Gizem Karaoğlan Yılmaz,Ramazan Yılmaz,Mehmet Ceylan
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:: 1-13 被引量:72
标识
DOI:10.1080/10447318.2023.2288730
摘要

The purpose of this study is to formulate an acceptance scale grounded in the Unified Theory of Acceptance and Use of Technology (UTAUT) model. The scale is designed to scrutinize students' acceptance of generative artificial intelligence (AI) applications. This tool assesses students' acceptance levels toward generative AI applications. The scale development study was conducted in three phases, encompassing 627 university students from various faculties who have utilized generative AI tools such as ChatGPT during the 2022–2023 academic year. To evaluate the face and content validity of the scale, input was sought from professionals with expertise in the field. The initial sample group (n = 338) underwent exploratory factor analysis (EFA) to explore the underlying factors, while the subsequent sample group (n = 250) underwent confirmatory factor analysis (CFA) for the verification of factor structure. Later, it was seen that four factors comprising 20 items accounted for 78.349% of total variance due to EFA. CFA results confirmed that structure of the scale, featuring 20 items and four factors (performance expectancy, effort expectancy, facilitating conditions, and social influence), was compatible with the obtained data. Reliability analysis yielded Cronbach's alpha coefficient of 0.97, and the test–retest method demonstrated a reliability coefficient of 0.95. To evaluate the discriminative power of the items, a comparative analysis was conducted between the lower 27% and upper 27% of participants, with subsequent calculation of corrected item-total correlations. The results demonstrate that the generative AI acceptance scale exhibits robust validity and reliability, thus affirming its effectiveness as a robust measurement instrument.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fengliguantou发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
李健的小迷弟应助momo采纳,获得10
2秒前
4秒前
大模型应助xueyu采纳,获得10
7秒前
做一只快乐的猪猪侠完成签到,获得积分20
7秒前
7秒前
酷炫的之柔完成签到,获得积分10
8秒前
xunxunmimi发布了新的文献求助10
10秒前
11秒前
乂贰ZERO叁完成签到 ,获得积分10
11秒前
思源应助酷炫的之柔采纳,获得10
12秒前
xiaohu发布了新的文献求助10
12秒前
Ant应助小李采纳,获得30
13秒前
14秒前
14秒前
苹果初阳发布了新的文献求助10
17秒前
此间少年完成签到,获得积分10
17秒前
19秒前
Hairee发布了新的文献求助10
19秒前
思源应助baonali采纳,获得10
20秒前
WXR完成签到,获得积分10
22秒前
蓝胖胖蓝完成签到,获得积分10
23秒前
蜘蛛道理完成签到 ,获得积分10
23秒前
LZM完成签到,获得积分10
24秒前
WuLunbi发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
28秒前
我还以为春天到了完成签到 ,获得积分10
28秒前
亲爱的融完成签到,获得积分10
29秒前
SherlockHe发布了新的文献求助10
30秒前
momo发布了新的文献求助10
31秒前
米饭多加水完成签到 ,获得积分10
33秒前
潘善若发布了新的文献求助10
34秒前
Jasper应助anna采纳,获得10
38秒前
zzr元亨利贞完成签到,获得积分10
40秒前
riccixuu完成签到 ,获得积分10
41秒前
潘善若发布了新的文献求助10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136