A statistical perspective for predicting the strength of metals: Revisiting the Hall–Petch relationship using machine learning

材料科学 微观结构 微晶 随机性 粒度 概率逻辑 流动应力 压力(语言学) 背景(考古学) 机器学习 人工智能 冶金 计算机科学 统计 数学 古生物学 语言学 哲学 生物
作者
Yejun Gu,Christopher D. Stiles,Jaafar A. El‐Awady
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:266: 119631-119631 被引量:7
标识
DOI:10.1016/j.actamat.2023.119631
摘要

The mechanical properties of a material are intimately related to its microstructure. This is particularly important for predicting mechanical behavior of polycrystalline metals, where microstructural variations dictate the expected material strength. Until now, the lack of microstructural variability in available datasets precluded the development of robust physics-based theoretical models that account for randomness of microstructures. To address this, we have developed a probabilistic machine learning framework to predict the flow stress as a function of variations in the microstructural features. In this framework, we first generated an extensive database of flow stress for a set of over a million randomly sampled microstructural features, and then applied a combination of mixture models and neural networks on the generated database to quantify the flow stress distribution and the relative importance of microstructural features. The results show excellent agreement with experiments and demonstrate that across a wide range of grain size, the conventional Hall–Petch relationship is statistically valid for correlating the strength to the average grain size and its comparative importance versus other microstructural features. This work demonstrates the power of the machine-learning based probabilistic approach for predicting polycrystalline strength, directly accounting for microstructural variations, resulting in a tool to guide the design of polycrystalline metallic materials with superior strength, and a method for overcoming sparse data limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
teadan完成签到 ,获得积分10
刚刚
虾米完成签到 ,获得积分10
刚刚
菟丝子完成签到,获得积分10
1秒前
KukudMing完成签到,获得积分10
5秒前
azh完成签到,获得积分10
5秒前
sumu完成签到,获得积分10
6秒前
8秒前
8秒前
wwz发布了新的文献求助10
9秒前
10秒前
11秒前
FashionBoy应助lydiaabc采纳,获得10
11秒前
11秒前
牛马完成签到 ,获得积分10
11秒前
MQ完成签到,获得积分10
12秒前
13秒前
pluto应助王小迪采纳,获得10
13秒前
Anson发布了新的文献求助10
13秒前
13秒前
兴奋的定帮应助ExtroGod采纳,获得10
14秒前
研友_8Raw2Z发布了新的文献求助10
14秒前
王二八完成签到,获得积分20
15秒前
满意的天蓝完成签到,获得积分20
15秒前
azh发布了新的文献求助10
15秒前
16秒前
16秒前
小小虾发布了新的文献求助10
16秒前
haochi发布了新的文献求助10
17秒前
负责的小蘑菇完成签到,获得积分10
18秒前
一口蛋黄苏完成签到,获得积分10
18秒前
18秒前
18秒前
elysia完成签到,获得积分10
19秒前
顾矜应助王二八采纳,获得10
19秒前
CyberHamster完成签到,获得积分10
20秒前
21秒前
22秒前
乐乐应助chenduoduochen采纳,获得10
23秒前
专注巨人发布了新的文献求助10
23秒前
领导范儿应助Jessie采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719