清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A statistical perspective for predicting the strength of metals: Revisiting the Hall–Petch relationship using machine learning

材料科学 微观结构 微晶 随机性 粒度 概率逻辑 流动应力 压力(语言学) 背景(考古学) 机器学习 人工智能 冶金 计算机科学 统计 数学 古生物学 语言学 哲学 生物
作者
Yejun Gu,Christopher D. Stiles,Jaafar A. El‐Awady
出处
期刊:Acta Materialia [Elsevier]
卷期号:266: 119631-119631 被引量:18
标识
DOI:10.1016/j.actamat.2023.119631
摘要

The mechanical properties of a material are intimately related to its microstructure. This is particularly important for predicting mechanical behavior of polycrystalline metals, where microstructural variations dictate the expected material strength. Until now, the lack of microstructural variability in available datasets precluded the development of robust physics-based theoretical models that account for randomness of microstructures. To address this, we have developed a probabilistic machine learning framework to predict the flow stress as a function of variations in the microstructural features. In this framework, we first generated an extensive database of flow stress for a set of over a million randomly sampled microstructural features, and then applied a combination of mixture models and neural networks on the generated database to quantify the flow stress distribution and the relative importance of microstructural features. The results show excellent agreement with experiments and demonstrate that across a wide range of grain size, the conventional Hall–Petch relationship is statistically valid for correlating the strength to the average grain size and its comparative importance versus other microstructural features. This work demonstrates the power of the machine-learning based probabilistic approach for predicting polycrystalline strength, directly accounting for microstructural variations, resulting in a tool to guide the design of polycrystalline metallic materials with superior strength, and a method for overcoming sparse data limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小凯发布了新的文献求助10
4秒前
白薇完成签到 ,获得积分10
14秒前
CodeCraft应助阿萨卡先生采纳,获得10
51秒前
相当鱼完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
lyh的老公发布了新的文献求助10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
wwe完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
阿萨卡先生完成签到,获得积分10
1分钟前
weiwei完成签到,获得积分10
1分钟前
weiwei发布了新的文献求助10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
Tashanzhishi完成签到,获得积分10
2分钟前
持卿应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
卜哥完成签到 ,获得积分10
3分钟前
3分钟前
FashionBoy应助盈盈采纳,获得10
3分钟前
weiwei发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
孤独太清发布了新的文献求助10
4分钟前
4分钟前
gszy1975完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715057
求助须知:如何正确求助?哪些是违规求助? 5229826
关于积分的说明 15273985
捐赠科研通 4866116
什么是DOI,文献DOI怎么找? 2612707
邀请新用户注册赠送积分活动 1562912
关于科研通互助平台的介绍 1520175