EXPRESS: How Socially Perceived Threat Shapes Preventive Behavior in the Context of COVID-19

2019年冠状病毒病(COVID-19) 背景(考古学) 业务 心理学 2019-20冠状病毒爆发 营销 社会心理学 医学 古生物学 疾病 病理 病毒学 爆发 传染病(医学专业) 生物
作者
Jingbo Hou,Liang Chen,Peiyu Chen
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241231864
摘要

Social technologies have revolutionized global connectivity, enabling instant sharing of information and virtual experiences of real-time events. In the context of natural disasters, including pandemics like COVID-19, these technologies can facilitate the dissemination of crucial localized information via social connectivity, enhancing awareness and preventive behavior even in areas not immediately threatened by the disaster or virus. Our paper investigates the relationship between socially perceived threats, shaped by social technologies and shared information on social media, and individuals’ preventive behavior, while controlling for immediate virus threats in local and neighboring areas. In Study 1, we establish that socially perceived threats, measured by the volume of COVID-19-related tweets in socially connected areas, positively correlate with preventive behavior after accounting for immediate virus threats. Study 2 delves into this phenomenon, revealing a notable association between COVID-19-related communication, particularly tweets regarding self-infection or severe symptoms, and increased preventive behavior. Intriguingly, subjective expressions of this social information are found to correlate with a heightened socially perceived threat, further promoting preventive behavior. Our paper contributes to the emerging field of operations management and information systems by highlighting the pivotal role of social technologies in shaping public perception and response during disaster early stages. We achieve this through the integration of diverse datasets, advancing our understanding of societal resilience and sustainability in the face of catastrophic events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助微笑枫采纳,获得10
1秒前
1秒前
星期八发布了新的文献求助10
1秒前
深情安青应助大力的无声采纳,获得10
1秒前
wu完成签到 ,获得积分10
1秒前
1秒前
1秒前
WuYiHHH发布了新的文献求助10
2秒前
2秒前
2秒前
llhh2024发布了新的文献求助10
2秒前
yuanll发布了新的文献求助20
3秒前
小马甲应助粥粥卷采纳,获得10
3秒前
华仔应助氼乚采纳,获得10
3秒前
3秒前
ssshuang发布了新的文献求助10
4秒前
4秒前
4秒前
跳跃仙人掌完成签到,获得积分0
4秒前
无情魂幽完成签到,获得积分20
4秒前
5秒前
卖鱼的乌鸦完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
阳光不弱发布了新的文献求助30
6秒前
空白幻想丶完成签到,获得积分10
6秒前
毛豆应助laoli2022采纳,获得10
6秒前
7秒前
30关闭了30文献求助
8秒前
FashionBoy应助现代的曲奇采纳,获得10
8秒前
欧阳世宏完成签到,获得积分10
8秒前
末岛完成签到,获得积分10
8秒前
36456657应助沁阳采纳,获得10
9秒前
阴阳怪气发布了新的文献求助10
9秒前
Wang Mu发布了新的文献求助50
9秒前
9秒前
方远锋发布了新的文献求助10
9秒前
10秒前
嘉心糖应助机灵柚子采纳,获得20
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916