制氢
纳米复合材料
光催化
三元运算
材料科学
异质结
可见光谱
光电子学
化学工程
氢
纳米技术
化学
催化作用
有机化学
工程类
程序设计语言
生物化学
计算机科学
作者
Yu Liang,Jian Sun,Liandong Yu,Mingzhen Xiu,Jianghong Zhang,Junrong Yue,Wei Li,Hao Ding,Guangwen Xu,Can Xue,Yizhong Huang
标识
DOI:10.1016/j.jallcom.2024.173629
摘要
Two ternary heterojunction composites, namely hollow-structured TiO2/CdS/Au and hollow-structured TiO2/Au/CdS, were successfully synthesized by preparing hollow-structured TiO2 first, followed by the deposition of Au and CdS (with different deposition sequences), respectively. In these two composites, hollow-structured TiO2 nanotubes provide 1D structure with large specific area, which facilitate the immobilization of CdS and Au nanoparticles and the transfer of electrons. CdS is visible-light responsive and Au nanoparticles can improve photocatalytic efficiency by the formation of schottky barrier and surface plasmon resonance effect (SPR). The structures and phases, morphologies, surface and optical properties of the two composites were systematically characterized. TiO2/CdS/Au ternary heterojunction composite has efficient light absorption ability and excellent performances in photocatalytic hydrogen generation (up to 3600 μmol h-1 g-1), which is more than 4 times higher than that of TiO2/Au/CdS (800 μmol h-1 g-1). Therefore, in this way, we present a promising strategy to construct hybrid photocatalysts for hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI