Single-Molecule Force Spectroscopy of Toehold-Mediated Strand Displacement

力谱学 DNA 核糖核酸 动力学 生物物理学 微秒 化学物理 单分子实验 分子 DNA纳米技术 流离失所(心理学) 荧光相关光谱 碱基对 化学 纳米技术 生物系统 材料科学 物理 原子力显微镜 生物 光学 心理学 生物化学 有机化学 量子力学 基因 心理治疗师
作者
Andreas Walbrun,Tianhe Wang,Michael Matthies,Petr Šulc,Friedrich C. Simmel,Matthias Rief
标识
DOI:10.1101/2024.01.16.575816
摘要

Abstract Toehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and is the foundation for a wide range of DNA or RNA-based reaction circuits. Previous studies have typically relied on bulk fluorescence measurements to investigate the kinetics of TMSD, which only provide effective, bulk-averaged reaction rates and do not resolve the process on the level of individual molecules or even base pairs. In this work, we addressed this limitation by exploring the dynamics of strand displacement processes at the single-molecule level using single-molecule force spectroscopy (SMFS) with an optical trap supported by state-of-the-art coarse-grained simulations. By probing the ends of the hairpin of a toehold structure, we can trigger and observe TMSD in real time with microsecond and nanometer resolution. Using a microfluidic assay where we expose the hairpin to a solution of trigger strands, we find that under load, TMSD proceeds very rapidly, with single step times of 1 μs. Introducing mismatches into the invader sequence allows us to tune stability such that invasion and re-invasion occur in equilibrium, even under load. This allows us to study thousands of invasion/re-invasion events on a single molecule and analyze the kinetics of the invasion process. Extrapolating our findings to zero load, we find single step times for DNA invading DNA four times faster than for RNA invading RNA. Moreover, we used force to study the kinetics of DNA invading RNA, a process that in the absence of force would rarely occur. Our results reveal the importance of sequence effects for the TMSD process and have importance for a wide range of applications in nucleic acid nanotechnology and synthetic biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助lalala采纳,获得10
1秒前
刘亦菲完成签到,获得积分10
1秒前
135gcl发布了新的文献求助10
1秒前
gzj完成签到,获得积分10
1秒前
淡定身影完成签到,获得积分10
1秒前
2秒前
Owen应助还不如瞎写采纳,获得10
2秒前
半凡发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
石石刘完成签到 ,获得积分10
4秒前
顺利毕业完成签到,获得积分10
5秒前
端庄冷荷完成签到 ,获得积分10
5秒前
5秒前
haoliu完成签到,获得积分10
5秒前
5秒前
阳光完成签到,获得积分10
6秒前
小飞完成签到,获得积分20
7秒前
Zzz完成签到,获得积分10
7秒前
7秒前
7秒前
Akim应助TRISTE采纳,获得10
8秒前
8秒前
shentucc完成签到,获得积分20
8秒前
8秒前
9秒前
SY完成签到,获得积分10
9秒前
龙晴完成签到 ,获得积分10
10秒前
10秒前
11秒前
1234发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
所就欧克发布了新的文献求助10
12秒前
13秒前
瞳瞳爱吃巴斯克完成签到 ,获得积分10
14秒前
15秒前
月星发布了新的文献求助10
15秒前
赘婿应助赫连紫采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809