已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Severity of natural calamities and crop yield prediction using hybrid deep learning model in Uttar Pradesh

北方邦 产量(工程) 自然灾害 作物 统计 农林复合经营 环境科学 农学 地理 数学 生物 社会经济学 气象学 经济 物理 热力学
作者
Rajneesh Kumar,Rajendra Prasad Mahapatra
出处
期刊:World water policy [Wiley]
卷期号:10 (1): 244-279
标识
DOI:10.1002/wwp2.12163
摘要

Abstract Crop yield prediction has gained major potential for global food production. Predicting crop yields based on specific parameters like soil, environment, crop, and water has been an interesting research topic in recent decades. To accurately predict crop yields, measuring the severities of natural calamities including water level is mainly required. However, the existing studies failed to predict crop yields accurately because of various issues like overfitting problems, difficulty in training, inability to handle large data, and reduced learning capability. Thus, the proposed study develops an efficient mechanism for accurately predicting crop yields by analyzing several natural calamities. Here, the input samples are initially pre‐processed to remove unwanted noises using data normalization and standardization. To enhance the performance of crop yield prediction, natural calamities are computed by using an Extreme Gradient Boosting (XGBoost) model based on parameters like the Palmer Drought Severity Index (PDSI), Severe Hail Index (SHI), and Storm Severity Index (SSI). Also, the hyperparameters of XGBoost model are tuned by utilizing Sheep Flock Optimization Algorithm (SFOA). Finally, the crop yield is predicted by proposing a new one‐dimensional convolutional gated recurrent unit neural network (1D‐CGRU). The proposed classifier predicts the crop yields with reduced error rates like mean square error (MSE) of 0.4363, root mean square error (RMSE) of 0.1904, normalized root mean squared error (NRMSE) of 0.00101, mean absolute error (MAE) of 0.2437, and R ‐squared ( R 2 ) of .2756. Also, the significant findings of the proposed study positively indicate that this study can be applicable to real‐time agricultural practices and is highly suitable for water quality predictions. Also, it can assist farmers and farming businesses in predicting the yield of crops in a specific season when to harvest and crop a plant for attaining improved crop yields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助morena采纳,获得30
1秒前
1秒前
谢朝邦发布了新的文献求助10
2秒前
orixero应助爱睡觉采纳,获得10
3秒前
鳗鱼厉发布了新的文献求助10
3秒前
阿坤发布了新的文献求助10
6秒前
14秒前
19秒前
Erica完成签到,获得积分10
22秒前
23秒前
23秒前
昏睡的南霜完成签到 ,获得积分10
23秒前
23秒前
CipherSage应助xiao金采纳,获得10
26秒前
27秒前
28秒前
xxzx发布了新的文献求助10
28秒前
chen应助牙套狗狗采纳,获得10
29秒前
甜北枳完成签到,获得积分10
32秒前
牛奶开水完成签到 ,获得积分10
32秒前
zyw12138完成签到,获得积分10
32秒前
雨过天晴发布了新的文献求助10
33秒前
共享精神应助chcmuer采纳,获得30
33秒前
zyw12138发布了新的文献求助10
36秒前
SYLH应助科研通管家采纳,获得10
41秒前
JamesPei应助科研通管家采纳,获得10
41秒前
无名老大应助科研通管家采纳,获得30
41秒前
41秒前
Orange应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
CipherSage应助科研通管家采纳,获得10
41秒前
吴世勋fans发布了新的文献求助30
43秒前
HJJHJH发布了新的文献求助20
45秒前
无花果应助HJJHJH采纳,获得10
53秒前
54秒前
锦七发布了新的文献求助10
57秒前
shidewu完成签到,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459939
求助须知:如何正确求助?哪些是违规求助? 3054253
关于积分的说明 9041113
捐赠科研通 2743493
什么是DOI,文献DOI怎么找? 1504932
科研通“疑难数据库(出版商)”最低求助积分说明 695556
邀请新用户注册赠送积分活动 694764