重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助李周采纳,获得10
刚刚
榴莲奶黄包完成签到,获得积分10
刚刚
汪金完成签到,获得积分10
刚刚
纯真电源发布了新的文献求助10
刚刚
ding应助圈圈采纳,获得10
1秒前
天才关注了科研通微信公众号
1秒前
1秒前
orixero应助张铭娟采纳,获得10
1秒前
franken完成签到,获得积分10
1秒前
健忘之卉完成签到,获得积分10
1秒前
心悦臣服发布了新的文献求助30
2秒前
NexusExplorer应助余语羽采纳,获得10
2秒前
bxbxbx发布了新的文献求助10
2秒前
邵开山完成签到,获得积分10
2秒前
好旺发布了新的文献求助10
3秒前
3秒前
3秒前
zzyzz完成签到 ,获得积分10
3秒前
xiaojie发布了新的文献求助10
3秒前
4秒前
启原完成签到,获得积分10
5秒前
充电宝应助新火新茶采纳,获得10
5秒前
打打应助笑点低的以亦采纳,获得10
5秒前
望北发布了新的文献求助10
5秒前
uuu发布了新的文献求助10
5秒前
语芙发布了新的文献求助10
5秒前
酷波er应助求知采纳,获得10
6秒前
流飞发布了新的文献求助10
6秒前
6秒前
科目三应助小掰采纳,获得10
6秒前
bkagyin应助牛与马采纳,获得10
7秒前
Refuel发布了新的文献求助10
7秒前
painting发布了新的文献求助10
7秒前
7秒前
avalanche应助ZXD1989采纳,获得50
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
CipherSage应助uuu采纳,获得10
9秒前
刘老板发布了新的文献求助10
9秒前
好旺完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567