Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuiwuming发布了新的文献求助10
刚刚
eliohu发布了新的文献求助10
刚刚
刻苦不弱发布了新的文献求助20
刚刚
刚刚
刚刚
菲菲完成签到,获得积分10
1秒前
上官若男应助熊佳璇采纳,获得10
1秒前
黎日新完成签到,获得积分10
1秒前
vv发布了新的文献求助10
1秒前
2秒前
qw1完成签到,获得积分20
3秒前
3秒前
西园寺鹿旎应助Hathaway采纳,获得30
4秒前
yuu发布了新的文献求助10
4秒前
5tcl发布了新的文献求助10
4秒前
大模型应助执着的宝采纳,获得10
5秒前
小白菜发布了新的文献求助10
6秒前
大王发布了新的文献求助10
6秒前
调皮的醉山完成签到 ,获得积分10
8秒前
dala发布了新的文献求助10
8秒前
慕青应助赫连烙采纳,获得10
10秒前
左耳钉应助YUYUYYU采纳,获得10
10秒前
14秒前
LZS完成签到,获得积分10
14秒前
16秒前
11发布了新的文献求助10
17秒前
nc发布了新的文献求助10
18秒前
YC完成签到 ,获得积分10
18秒前
19秒前
5tcl完成签到,获得积分10
19秒前
浮游应助mingmingjiu采纳,获得10
20秒前
鲨鱼娃完成签到,获得积分10
22秒前
22秒前
美好的老黑完成签到 ,获得积分10
22秒前
xhnmdl完成签到 ,获得积分10
22秒前
英俊的铭应助2312采纳,获得10
22秒前
飘逸访蕊发布了新的文献求助10
24秒前
乐乐完成签到,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564