Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经如是完成签到,获得积分10
刚刚
2秒前
霜糖完成签到,获得积分10
3秒前
5秒前
高大厉完成签到 ,获得积分10
6秒前
科研雪完成签到,获得积分10
7秒前
冷漠的布丁完成签到,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得20
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
xiao发布了新的文献求助10
8秒前
彩色尔珍发布了新的文献求助10
9秒前
9秒前
今后应助平常寄翠采纳,获得10
13秒前
科研通AI6应助科研雪采纳,获得10
14秒前
梓泽丘墟发布了新的文献求助100
14秒前
打打应助7676采纳,获得10
16秒前
llz发布了新的文献求助10
16秒前
17秒前
17秒前
充电宝应助xiao采纳,获得100
17秒前
18秒前
拼搏书琴完成签到 ,获得积分10
18秒前
ooooo完成签到,获得积分10
19秒前
腼腆的又槐完成签到,获得积分10
19秒前
JIA发布了新的文献求助50
19秒前
lilili应助刘老哥6采纳,获得10
20秒前
勤恳逍遥完成签到,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
innyjiang完成签到,获得积分10
22秒前
周舟发布了新的文献求助10
22秒前
霸气的梦露完成签到,获得积分10
24秒前
洋洋完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534740
关于积分的说明 14146552
捐赠科研通 4451384
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433305
关于科研通互助平台的介绍 1410587