Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅松完成签到 ,获得积分20
1秒前
上官若男应助搞怪的青梦采纳,获得10
1秒前
scarlett发布了新的文献求助10
1秒前
haha发布了新的文献求助10
2秒前
2秒前
Li应助Maximuszhao采纳,获得10
2秒前
z荩发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI6应助能干妙竹采纳,获得30
3秒前
Jodie0610发布了新的文献求助10
3秒前
CGGBZLX发布了新的文献求助10
4秒前
yangzhuang发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
鳄鱼天使完成签到,获得积分10
6秒前
Ava应助山下梅子酒采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
czy完成签到,获得积分10
9秒前
朴素山兰发布了新的文献求助10
9秒前
9秒前
明媚发布了新的文献求助10
9秒前
桐桐应助高中生采纳,获得10
9秒前
10秒前
deep发布了新的文献求助10
11秒前
11秒前
scarlett完成签到,获得积分10
11秒前
英吉利25发布了新的文献求助10
11秒前
old幽露露完成签到 ,获得积分10
12秒前
江雯君完成签到,获得积分10
12秒前
Cecilia发布了新的文献求助10
12秒前
溪川流完成签到,获得积分10
13秒前
jason完成签到,获得积分0
13秒前
怕孤独的广缘完成签到 ,获得积分10
13秒前
香蕉觅云应助大反应釜采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165