Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助再见不难采纳,获得10
刚刚
yy完成签到 ,获得积分10
1秒前
Z1完成签到,获得积分10
1秒前
甜美的沅完成签到 ,获得积分10
1秒前
Ava应助酸柠檬本檬采纳,获得10
1秒前
1秒前
junjun发布了新的文献求助10
2秒前
Maestro_S应助ccc采纳,获得10
2秒前
2秒前
3秒前
ssssssu发布了新的文献求助10
4秒前
花鸟风月evereo完成签到,获得积分10
5秒前
122456完成签到,获得积分10
5秒前
5秒前
6秒前
iNk应助junjun采纳,获得10
6秒前
DijiaXu应助鑫鑫努力学习采纳,获得10
6秒前
7秒前
思源应助chen采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
弱水应助wojojo采纳,获得30
7秒前
8秒前
深情安青应助Shinka采纳,获得10
8秒前
Hellodude发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
箫笛完成签到 ,获得积分10
10秒前
10秒前
222333发布了新的文献求助10
12秒前
咚咚咚发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助50
14秒前
hush发布了新的文献求助10
14秒前
rorraine_xu完成签到,获得积分10
15秒前
15秒前
鳗鱼煜祺发布了新的文献求助10
15秒前
15秒前
欧阳完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960247
求助须知:如何正确求助?哪些是违规求助? 4220767
关于积分的说明 13144216
捐赠科研通 4004605
什么是DOI,文献DOI怎么找? 2191552
邀请新用户注册赠送积分活动 1205753
关于科研通互助平台的介绍 1116915