Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
仁爱发卡完成签到,获得积分10
1秒前
1秒前
风趣靳发布了新的文献求助20
1秒前
小蘑菇应助hhh采纳,获得10
1秒前
Fionaaaaa_发布了新的文献求助10
1秒前
二二发布了新的文献求助10
1秒前
2秒前
善学以致用应助J_C_Van采纳,获得10
2秒前
刘福军发布了新的文献求助10
2秒前
领导范儿应助局内人采纳,获得10
3秒前
万能图书馆应助SpONGeBOb采纳,获得10
3秒前
李健的小迷弟应助开心采纳,获得10
3秒前
3秒前
3秒前
Pittes完成签到,获得积分10
3秒前
XNF发布了新的文献求助10
4秒前
自然冷亦完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
fanzi发布了新的文献求助10
5秒前
四氧化三铁完成签到,获得积分10
5秒前
5秒前
maoxiaodiu发布了新的文献求助10
5秒前
sylnd126发布了新的文献求助50
5秒前
kk摆烂发布了新的文献求助10
6秒前
plant发布了新的文献求助10
6秒前
Lothar完成签到,获得积分10
6秒前
6秒前
紫苏完成签到,获得积分10
7秒前
桐桐应助景飞丹采纳,获得10
7秒前
7秒前
医学僧发布了新的文献求助10
7秒前
Jasper应助南风采纳,获得10
8秒前
8秒前
8秒前
8秒前
Koalas完成签到,获得积分0
9秒前
正己化人应助Affenyi采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404928
求助须知:如何正确求助?哪些是违规求助? 4523309
关于积分的说明 14092903
捐赠科研通 4437016
什么是DOI,文献DOI怎么找? 2435363
邀请新用户注册赠送积分活动 1427653
关于科研通互助平台的介绍 1405990