已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network

计算机科学 人工神经网络 感知器 人工智能 图形 RNA序列 数据挖掘 模式识别(心理学) 理论计算机科学 化学 基因表达 生物化学 转录组 基因
作者
Feng Xia,Yu Xiu,Haixia Long,Zitong Wang,Bilal Alsallakh,Liming Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad481
摘要

Abstract The advancement of single-cell sequencing technology has smoothed the ability to do biological studies at the cellular level. Nevertheless, single-cell RNA sequencing (scRNA-seq) data presents several obstacles due to the considerable heterogeneity, sparsity and complexity. Although many machine-learning models have been devised to tackle these difficulties, there is still a need to enhance their efficiency and accuracy. Current deep learning methods often fail to fully exploit the intrinsic interconnections within cells, resulting in unsatisfactory results. Given these obstacles, we propose a unique approach for analyzing scRNA-seq data called scMPN. This methodology integrates multi-layer perceptron and graph neural network, including attention network, to execute gene imputation and cell clustering tasks. In order to evaluate the gene imputation performance of scMPN, several metrics like cosine similarity, median L1 distance and root mean square error are used. These metrics are utilized to compare the efficacy of scMPN with other existing approaches. This research utilizes criteria such as adjusted mutual information, normalized mutual information and integrity score to assess the efficacy of cell clustering across different approaches. The superiority of scMPN over current single-cell data processing techniques in cell clustering and gene imputation investigations is shown by the experimental findings obtained from four datasets with gold-standard cell labels. This observation demonstrates the efficacy of our suggested methodology in using deep learning methodologies to enhance the interpretation of scRNA-seq data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅立叶完成签到,获得积分10
2秒前
3秒前
香蕉觅云应助时间如水采纳,获得10
4秒前
科研通AI6应助洁净芸遥采纳,获得10
5秒前
fudge完成签到 ,获得积分10
7秒前
7秒前
8秒前
橙汁发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
田様应助yushe采纳,获得10
11秒前
情怀应助谨慎蜗牛采纳,获得10
11秒前
lvzhechen发布了新的文献求助10
13秒前
13秒前
BoBo发布了新的文献求助10
13秒前
GR发布了新的文献求助10
15秒前
19秒前
霸气的依瑶完成签到,获得积分10
19秒前
青瓜大薯完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
Brook1985完成签到,获得积分10
24秒前
无聊人完成签到,获得积分10
24秒前
25秒前
25秒前
飞翔的梦发布了新的文献求助20
26秒前
26秒前
时间如水发布了新的文献求助10
28秒前
21发布了新的文献求助10
28秒前
29秒前
29秒前
daytoy完成签到,获得积分10
29秒前
wentong完成签到,获得积分10
30秒前
hongxuezhi发布了新的文献求助10
32秒前
追寻麦片完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469690
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336868
捐赠科研通 4499634
什么是DOI,文献DOI怎么找? 2465126
邀请新用户注册赠送积分活动 1453693
关于科研通互助平台的介绍 1428209