Data driven computational design of stable oxygen evolution catalysts by DFT and machine learning: Promising electrocatalysts

催化作用 析氧 密度泛函理论 电化学 材料科学 过渡金属 纳米技术 化学 计算机科学 组合化学 计算化学 物理化学 有机化学 电极
作者
Hwanyeol Park,Yunseok Kim,Seulwon Choi,Ho Jun Kim
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:91: 645-655 被引量:21
标识
DOI:10.1016/j.jechem.2023.12.048
摘要

The revolutionary development of machine learning (ML), data science, and analytics, coupled with its application in material science, stands as a significant milestone of the scientific community over the last decade. Investigating active, stable, and cost-efficient catalysts is crucial for oxygen evolution reaction owing to the significance in a range of electrochemical energy conversion processes. In this work, we have demonstrated an efficient approach of high-throughput screening to find stable transition metal oxides under acid condition for high-performance oxygen evolution reaction (OER) catalysts through density functional theory (DFT) calculation and a machine learning algorithm. A methodology utilizing both the Materials Project database and DFT calculations was introduced to assess the acid stability under specific reaction conditions. Building upon this, OER catalytic activity of acid-stable materials was examined, highlighting potential OER catalysts that meet the required properties. We identified IrO2, Fe(SbO3)2, Co(SbO3)2, Ni(SbO3)2, FeSbO4, Fe(SbO3)4, MoWO6, TiSnO4, CoSbO4, and Ti(WO4)2 as promising catalysts, several of which have already been experimentally discovered for their robust OER performance, while others are novel for experimental exploration, thereby broadening the chemical scope for efficient OER electrocatalysts. Descriptors of the bond length of TM–O and the first ionization energy were used to unveil the OER activity origin. From the calculated results, guidance has been derived to effectively execute advanced high-throughput screenings for the discovery of catalysts with favorable properties. Furthermore, the intrinsic correlation between catalytic performance and various atomic and structural factors was elucidated using the ML algorithm. Through these approaches, we not only streamline the choice of the promising electrocatalysts but also offer insights for the design of varied catalyst models and the discovery of superior catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助Linda采纳,获得10
1秒前
2秒前
minjeong完成签到,获得积分10
3秒前
4秒前
天生圣人完成签到,获得积分10
5秒前
情怀应助myy采纳,获得10
6秒前
恋雅颖月应助甜甜圈采纳,获得10
7秒前
8秒前
醉熏的荣轩完成签到 ,获得积分10
9秒前
10秒前
同人一剑完成签到,获得积分10
10秒前
白樱恋曲发布了新的文献求助10
10秒前
10秒前
13秒前
dad发布了新的文献求助10
13秒前
yuki完成签到 ,获得积分10
15秒前
16秒前
16秒前
细心香烟完成签到 ,获得积分10
16秒前
19秒前
20秒前
sara发布了新的文献求助10
21秒前
张雷完成签到,获得积分10
22秒前
tanglu发布了新的文献求助10
25秒前
baibai发布了新的文献求助10
25秒前
小文殊完成签到 ,获得积分10
27秒前
大模型应助白樱恋曲采纳,获得10
29秒前
dad完成签到,获得积分10
31秒前
33秒前
赘婿应助yzxzdm采纳,获得30
33秒前
一番星发布了新的文献求助10
34秒前
34秒前
打打应助卜凡采纳,获得10
36秒前
彩虹毛毛虫完成签到,获得积分10
36秒前
clarklkq完成签到,获得积分10
37秒前
jenningseastera举报102755求助涉嫌违规
40秒前
40秒前
酷炫青烟完成签到,获得积分10
42秒前
Lucas应助Wen采纳,获得10
43秒前
baibai完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425