已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data driven computational design of stable oxygen evolution catalysts by DFT and machine learning: Promising electrocatalysts

催化作用 析氧 密度泛函理论 电化学 材料科学 过渡金属 纳米技术 化学 计算机科学 组合化学 计算化学 物理化学 有机化学 电极
作者
Hwanyeol Park,Yunseok Kim,Seulwon Choi,Ho Jun Kim
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:91: 645-655 被引量:11
标识
DOI:10.1016/j.jechem.2023.12.048
摘要

The revolutionary development of machine learning (ML), data science, and analytics, coupled with its application in material science, stands as a significant milestone of the scientific community over the last decade. Investigating active, stable, and cost-efficient catalysts is crucial for oxygen evolution reaction owing to the significance in a range of electrochemical energy conversion processes. In this work, we have demonstrated an efficient approach of high-throughput screening to find stable transition metal oxides under acid condition for high-performance oxygen evolution reaction (OER) catalysts through density functional theory (DFT) calculation and a machine learning algorithm. A methodology utilizing both the Materials Project database and DFT calculations was introduced to assess the acid stability under specific reaction conditions. Building upon this, OER catalytic activity of acid-stable materials was examined, highlighting potential OER catalysts that meet the required properties. We identified IrO2, Fe(SbO3)2, Co(SbO3)2, Ni(SbO3)2, FeSbO4, Fe(SbO3)4, MoWO6, TiSnO4, CoSbO4, and Ti(WO4)2 as promising catalysts, several of which have already been experimentally discovered for their robust OER performance, while others are novel for experimental exploration, thereby broadening the chemical scope for efficient OER electrocatalysts. Descriptors of the bond length of TM–O and the first ionization energy were used to unveil the OER activity origin. From the calculated results, guidance has been derived to effectively execute advanced high-throughput screenings for the discovery of catalysts with favorable properties. Furthermore, the intrinsic correlation between catalytic performance and various atomic and structural factors was elucidated using the ML algorithm. Through these approaches, we not only streamline the choice of the promising electrocatalysts but also offer insights for the design of varied catalyst models and the discovery of superior catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
begonia2021发布了新的文献求助10
3秒前
瑾木完成签到 ,获得积分10
4秒前
岸部发布了新的文献求助10
5秒前
5秒前
Hui完成签到,获得积分10
6秒前
Master完成签到 ,获得积分10
6秒前
7秒前
wyx完成签到 ,获得积分10
10秒前
健忘幻儿发布了新的文献求助10
11秒前
研友_ZragOn完成签到,获得积分10
12秒前
伶俐向梦完成签到,获得积分10
12秒前
星期五完成签到,获得积分10
13秒前
Captain发布了新的文献求助30
13秒前
15秒前
淡然的书本完成签到,获得积分20
15秒前
牪犇发布了新的文献求助10
16秒前
光亮的半山完成签到 ,获得积分10
19秒前
岸部发布了新的文献求助10
20秒前
荔枝完成签到 ,获得积分10
22秒前
Captain完成签到,获得积分10
22秒前
bkagyin应助karstbing采纳,获得30
23秒前
想游泳的鹰完成签到,获得积分10
24秒前
24秒前
26秒前
深情安青应助Aprilapple采纳,获得10
27秒前
小于一完成签到 ,获得积分10
31秒前
qianghw发布了新的文献求助10
32秒前
Rw完成签到 ,获得积分10
33秒前
健忘幻儿完成签到 ,获得积分10
34秒前
xiaozhao完成签到 ,获得积分10
37秒前
靖柔完成签到 ,获得积分10
37秒前
wanci应助begonia2021采纳,获得10
38秒前
Minerva完成签到,获得积分20
38秒前
麻瓜完成签到,获得积分10
38秒前
雍雍完成签到 ,获得积分10
39秒前
牪犇完成签到 ,获得积分10
41秒前
杳鸢应助橘子sungua采纳,获得10
43秒前
领导范儿应助岸部采纳,获得10
44秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171355
求助须知:如何正确求助?哪些是违规求助? 2822342
关于积分的说明 7938795
捐赠科研通 2482815
什么是DOI,文献DOI怎么找? 1322807
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627