Data driven computational design of stable oxygen evolution catalysts by DFT and machine learning: Promising electrocatalysts

催化作用 析氧 密度泛函理论 电化学 材料科学 过渡金属 纳米技术 化学 计算机科学 组合化学 计算化学 物理化学 有机化学 电极
作者
Hwanyeol Park,Yunseok Kim,Seulwon Choi,Ho Jun Kim
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:91: 645-655 被引量:41
标识
DOI:10.1016/j.jechem.2023.12.048
摘要

The revolutionary development of machine learning (ML), data science, and analytics, coupled with its application in material science, stands as a significant milestone of the scientific community over the last decade. Investigating active, stable, and cost-efficient catalysts is crucial for oxygen evolution reaction owing to the significance in a range of electrochemical energy conversion processes. In this work, we have demonstrated an efficient approach of high-throughput screening to find stable transition metal oxides under acid condition for high-performance oxygen evolution reaction (OER) catalysts through density functional theory (DFT) calculation and a machine learning algorithm. A methodology utilizing both the Materials Project database and DFT calculations was introduced to assess the acid stability under specific reaction conditions. Building upon this, OER catalytic activity of acid-stable materials was examined, highlighting potential OER catalysts that meet the required properties. We identified IrO2, Fe(SbO3)2, Co(SbO3)2, Ni(SbO3)2, FeSbO4, Fe(SbO3)4, MoWO6, TiSnO4, CoSbO4, and Ti(WO4)2 as promising catalysts, several of which have already been experimentally discovered for their robust OER performance, while others are novel for experimental exploration, thereby broadening the chemical scope for efficient OER electrocatalysts. Descriptors of the bond length of TM–O and the first ionization energy were used to unveil the OER activity origin. From the calculated results, guidance has been derived to effectively execute advanced high-throughput screenings for the discovery of catalysts with favorable properties. Furthermore, the intrinsic correlation between catalytic performance and various atomic and structural factors was elucidated using the ML algorithm. Through these approaches, we not only streamline the choice of the promising electrocatalysts but also offer insights for the design of varied catalyst models and the discovery of superior catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朴实曼岚完成签到,获得积分10
1秒前
昂帕帕斯完成签到,获得积分10
2秒前
yy应助生动的芙蓉采纳,获得10
3秒前
3秒前
nn发布了新的文献求助10
4秒前
6秒前
肖果完成签到 ,获得积分10
7秒前
7秒前
Lucas应助白洛寒采纳,获得10
7秒前
yuan发布了新的文献求助10
8秒前
8秒前
所所应助lx采纳,获得10
8秒前
zyc发布了新的文献求助10
8秒前
寒梅恋雪完成签到 ,获得积分10
9秒前
长之欠发布了新的文献求助10
10秒前
俏皮皮带关注了科研通微信公众号
10秒前
科研通AI6应助阿肖呀采纳,获得10
11秒前
13秒前
nan11发布了新的文献求助10
13秒前
13秒前
14秒前
tian完成签到,获得积分10
14秒前
水蜜桃完成签到 ,获得积分10
14秒前
RED发布了新的文献求助10
17秒前
17秒前
19秒前
GingerF应助Liu采纳,获得50
19秒前
lms发布了新的文献求助10
19秒前
20秒前
我爱睡觉完成签到,获得积分20
20秒前
21秒前
22秒前
气球洋洋完成签到,获得积分10
22秒前
22秒前
22秒前
24秒前
jiejie321发布了新的文献求助10
25秒前
25秒前
我爱睡觉发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838