A short-term wind power forecasting method based on multivariate signal decomposition and variable selection

期限(时间) 特征选择 多元统计 选择(遗传算法) 分解 变量(数学) 风力发电 风电预测 计量经济学 统计 计算机科学 功率(物理) 数学 人工智能 工程类 电力系统 电气工程 化学 数学分析 物理 有机化学 量子力学
作者
Ting Yang,Zhenning Yang,Fei Li,Hengyu Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:360: 122759-122759 被引量:25
标识
DOI:10.1016/j.apenergy.2024.122759
摘要

Accurate and effective short-term wind power forecasting is vital for the large-scale integration of wind power generation into the power grid. However, due to the intermittence and volatility of wind resources, short-term wind power forecasting is challenging. To address the issue that the existing decomposition forecasting methods ignore the coupling relationship between wind power series and multiple meteorological series, this study proposes a short-term wind power forecasting method based on multivariate signal decomposition and variable selection. First, multivariate variational mode decomposition (MVMD) is used to perform time-frequency synchronous analysis on wind power and multidimensional meteorological series, thereby decomposing them into the same predefined number of frequency-aligned intrinsic mode functions (IMFs). Secondly, elastic net (EN) is used for supervised variable selection on all IMFs to provide a high-quality training set for the forecasting model, thereby enhancing precision and interpretability. Next, a hybrid deep neural network combining convolutional neural network (CNN), bidirectional long-short term memory (BiLSTM) neural network, and multi-head attention (MHA) mechanism is employed to model the output curve of a group of wind turbines in a wind farm. Finally, the proposed method is comprehensively evaluated through four sets of comparative experiments and multiple evaluation metrics on data gathered from the Mahuangshan first wind farm in China with four forecasting horizons: 15-min ahead, 30-min ahead, 45-min ahead, and 1-h ahead. The experimental results show that the proposed method significantly outperforms fifteen existing deep learning methods in terms of precision and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好关注了科研通微信公众号
1秒前
会飞的鱼完成签到 ,获得积分10
1秒前
ainiowo应助科研通管家采纳,获得10
2秒前
yyg应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
不懈奋进应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
今后应助好久不见采纳,获得10
3秒前
3秒前
陆lu发布了新的文献求助10
3秒前
湛刘佳发布了新的文献求助10
3秒前
4秒前
李健应助贪玩小小采纳,获得10
5秒前
5秒前
完美世界应助重要的不二采纳,获得10
8秒前
zy完成签到,获得积分20
9秒前
9秒前
10秒前
12秒前
13秒前
wyyy完成签到,获得积分10
14秒前
VaVa完成签到,获得积分10
16秒前
乐乐乐乐乐完成签到,获得积分10
16秒前
高数数完成签到 ,获得积分10
17秒前
18秒前
sirhai发布了新的文献求助30
18秒前
20秒前
21秒前
搜集达人应助LSS采纳,获得10
21秒前
晚睡早起学完成签到,获得积分10
22秒前
Orange应助人文采纳,获得10
24秒前
你好发布了新的文献求助10
24秒前
xiaoZ发布了新的文献求助10
24秒前
Wangyingjie5完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559846
求助须知:如何正确求助?哪些是违规求助? 3134300
关于积分的说明 9406386
捐赠科研通 2834333
什么是DOI,文献DOI怎么找? 1558074
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522