材料科学
自愈水凝胶
明胶
硼砂
复合材料
标度系数
动态力学分析
粘附
纳米技术
生物医学工程
聚合物
制作
高分子化学
有机化学
原材料
替代医学
化学
病理
医学
生物化学
作者
Rongrong Zhao,Zengdian Zhao,Shasha Song,Yifan Wang
标识
DOI:10.1021/acsami.3c15522
摘要
As typical soft materials, hydrogels have demonstrated great potential for the fabrication of flexible sensors due to their highly compatible elastic modulus with human skin, prominent flexibility, and biocompatible three-dimensional network structure. However, the practical application of wearable hydrogel sensors is significantly constrained because of weak adhesion, limited stretchability, and poor self-healing properties of traditional hydrogels. Herein, a multifunctional sodium hyaluronate (SH)/borax (B)/gelatin (G) double-cross-linked conductive hydrogel (SBG) was designed and constructed through a simple one-pot blending strategy with SH and gelatin as the gel matrix and borax as the dynamic cross-linker. The obtained SBG hydrogels exhibited a moderate tensile strength of 25.3 kPa at a large elongation of 760%, high interfacial toughness (106.5 kJ m-3), strong adhesion (28 kPa to paper), and satisfactory conductivity (224.5 mS/m). In particular, the dynamic cross-linking between SH, gelatin, and borax via borate ester bonds and hydrogen bonds between SH and gelatin chain endowed the SBG hydrogels with good fatigue resistance (>300 cycles), rapid self-healing performance (HE (healing efficiency) ∼97.03%), and excellent repeatable adhesion. The flexible wearable sensor assembled with SBG hydrogels demonstrated desirable strain sensing performance with a competitive gauge factor and exceptional stability, which enabled it to detect and distinguish various multiscale human motions and physiological signals. Furthermore, the flexible sensor is capable of precisely perceiving temperature variation with a high thermal sensitivity (1.685% °C-1). As a result, the wearable sensor displayed dual sensory performance for temperature and strain deformation. It is envisioned that the integration of strain sensors and thermal sensors provide a novel and convenient strategy for the next generation of multisensory wearable electronics and lay a solid foundation for their application in electronic skin and soft actuators.
科研通智能强力驱动
Strongly Powered by AbleSci AI