An SAR Target Classification Algorithm Based on the Central Coordinate Attention Module

计算机科学 合成孔径雷达 人工智能 计算机视觉 算法
作者
Jiaqiu Ai,Z. H. Qu,Zhicheng Zhao,Yong Zhang,Jun Shi,Hao Yan
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (2): 1941-1952
标识
DOI:10.1109/jsen.2023.3338218
摘要

Recent studies show that the attention mechanism can greatly improve the performance of synthetic aperture radar (SAR) target classification. However, the existing attention models, such as squeeze-and-excitation (SE), convolutional block attention module (CBAM), and coordinate attention (CA), emphasize the importance of the attention features of different channels, different columns, or different rows, ignoring the importance of pixel-level feature in the attention feature maps. Moreover, these models ignore the center-distribution characteristic of the targets in SAR images, so the feature importance difference between the central target and the interference at the image borders cannot be well distinguished. As a consequence, they cannot achieve a high classification accuracy. In order to solve the above problems, this article proposes an SAR target classification algorithm based on the central CA module (CCAM). CCAM highlights those important pixels in the feature maps through a pixel-level attention feature fusion strategy. Therefore, the importance difference of each pixel in the feature maps can be well distinguished. In addition, CCAM designs a center-importance weighting kernel, which highlights the center-distribution characteristic information of the SAR targets in the images and weakens the interference at the image borders. Therefore, the feature importance difference between the central target and the interference at the image borders can be well distinguished. Finally, in order to achieve high efficiency, the proposed CCAM is incorporated into the convolutional neural network (CNN) for final SAR target classification. Undoubtedly, CCAM can greatly elevate the target feature representation completeness, thus improving the SAR target classification accuracy with a high efficiency. Experimental results on the MSTAR dataset verify the superiority and effectiveness of the proposed CCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
墨沁完成签到,获得积分10
4秒前
7秒前
lili发布了新的文献求助10
7秒前
SciGPT应助可达燊采纳,获得10
7秒前
10秒前
羊羊羊发布了新的文献求助10
11秒前
可爱的函函应助顺心从霜采纳,获得10
11秒前
核桃发布了新的文献求助10
11秒前
12秒前
FashionBoy应助ll采纳,获得10
13秒前
科目三应助Tianping采纳,获得10
13秒前
13秒前
13秒前
heymax完成签到,获得积分10
14秒前
15秒前
cyy1226发布了新的文献求助10
16秒前
18秒前
19秒前
23秒前
YG完成签到,获得积分10
23秒前
25秒前
老实的石头完成签到,获得积分10
26秒前
宇心完成签到,获得积分10
28秒前
29秒前
32秒前
LaTeXer应助洛伦佐Lorenzo采纳,获得50
33秒前
34秒前
箫笛发布了新的文献求助20
34秒前
35秒前
乌龟发布了新的文献求助10
37秒前
39秒前
yx_cheng应助fzzf采纳,获得10
39秒前
InaZheng发布了新的文献求助10
40秒前
耐火圆饼完成签到,获得积分10
40秒前
44秒前
张建发布了新的文献求助10
45秒前
完美世界应助111采纳,获得10
46秒前
47秒前
陈皮完成签到 ,获得积分10
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999076
求助须知:如何正确求助?哪些是违规求助? 3538508
关于积分的说明 11274412
捐赠科研通 3277402
什么是DOI,文献DOI怎么找? 1807554
邀请新用户注册赠送积分活动 883917
科研通“疑难数据库(出版商)”最低求助积分说明 810080