An SAR Target Classification Algorithm Based on the Central Coordinate Attention Module

计算机科学 合成孔径雷达 人工智能 计算机视觉 算法
作者
Jiaqiu Ai,Z. H. Qu,Zhicheng Zhao,Yong Zhang,Jun Shi,Hao Yan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1941-1952
标识
DOI:10.1109/jsen.2023.3338218
摘要

Recent studies show that the attention mechanism can greatly improve the performance of synthetic aperture radar (SAR) target classification. However, the existing attention models, such as squeeze-and-excitation (SE), convolutional block attention module (CBAM), and coordinate attention (CA), emphasize the importance of the attention features of different channels, different columns, or different rows, ignoring the importance of pixel-level feature in the attention feature maps. Moreover, these models ignore the center-distribution characteristic of the targets in SAR images, so the feature importance difference between the central target and the interference at the image borders cannot be well distinguished. As a consequence, they cannot achieve a high classification accuracy. In order to solve the above problems, this article proposes an SAR target classification algorithm based on the central CA module (CCAM). CCAM highlights those important pixels in the feature maps through a pixel-level attention feature fusion strategy. Therefore, the importance difference of each pixel in the feature maps can be well distinguished. In addition, CCAM designs a center-importance weighting kernel, which highlights the center-distribution characteristic information of the SAR targets in the images and weakens the interference at the image borders. Therefore, the feature importance difference between the central target and the interference at the image borders can be well distinguished. Finally, in order to achieve high efficiency, the proposed CCAM is incorporated into the convolutional neural network (CNN) for final SAR target classification. Undoubtedly, CCAM can greatly elevate the target feature representation completeness, thus improving the SAR target classification accuracy with a high efficiency. Experimental results on the MSTAR dataset verify the superiority and effectiveness of the proposed CCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五十年老西医完成签到,获得积分10
刚刚
洗剪吹发布了新的文献求助10
2秒前
小蘑菇应助发酱采纳,获得10
2秒前
3秒前
包容的海豚完成签到 ,获得积分10
4秒前
kim发布了新的文献求助10
5秒前
白头蝰发布了新的文献求助30
5秒前
研友_VZG7GZ应助huyang采纳,获得10
5秒前
慕青应助123采纳,获得10
6秒前
7秒前
月兮2013完成签到,获得积分10
9秒前
10秒前
香蕉子骞发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
kim完成签到,获得积分10
14秒前
Owen应助哒哒哒采纳,获得10
15秒前
思源应助公孙朝雨采纳,获得10
15秒前
15秒前
x1981完成签到,获得积分10
15秒前
16秒前
坚强香旋完成签到,获得积分10
16秒前
huyang发布了新的文献求助10
18秒前
cr发布了新的文献求助10
19秒前
看文献也是技术活完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助Mono采纳,获得10
21秒前
21秒前
文艺的棒球完成签到,获得积分10
21秒前
踏实的黎云完成签到,获得积分20
21秒前
发酱发布了新的文献求助10
22秒前
23秒前
滴滴滴发布了新的文献求助10
24秒前
我唉科研发布了新的文献求助10
24秒前
26秒前
哒哒哒发布了新的文献求助10
27秒前
Hello应助呆呆采纳,获得10
27秒前
白头蝰完成签到,获得积分10
28秒前
旧是发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079