An SAR Target Classification Algorithm Based on the Central Coordinate Attention Module

计算机科学 合成孔径雷达 人工智能 计算机视觉 算法
作者
Jiaqiu Ai,Z. H. Qu,Zhicheng Zhao,Yong Zhang,Jun Shi,Hao Yan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1941-1952
标识
DOI:10.1109/jsen.2023.3338218
摘要

Recent studies show that the attention mechanism can greatly improve the performance of synthetic aperture radar (SAR) target classification. However, the existing attention models, such as squeeze-and-excitation (SE), convolutional block attention module (CBAM), and coordinate attention (CA), emphasize the importance of the attention features of different channels, different columns, or different rows, ignoring the importance of pixel-level feature in the attention feature maps. Moreover, these models ignore the center-distribution characteristic of the targets in SAR images, so the feature importance difference between the central target and the interference at the image borders cannot be well distinguished. As a consequence, they cannot achieve a high classification accuracy. In order to solve the above problems, this article proposes an SAR target classification algorithm based on the central CA module (CCAM). CCAM highlights those important pixels in the feature maps through a pixel-level attention feature fusion strategy. Therefore, the importance difference of each pixel in the feature maps can be well distinguished. In addition, CCAM designs a center-importance weighting kernel, which highlights the center-distribution characteristic information of the SAR targets in the images and weakens the interference at the image borders. Therefore, the feature importance difference between the central target and the interference at the image borders can be well distinguished. Finally, in order to achieve high efficiency, the proposed CCAM is incorporated into the convolutional neural network (CNN) for final SAR target classification. Undoubtedly, CCAM can greatly elevate the target feature representation completeness, thus improving the SAR target classification accuracy with a high efficiency. Experimental results on the MSTAR dataset verify the superiority and effectiveness of the proposed CCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohei发布了新的文献求助10
刚刚
hxx发布了新的文献求助10
刚刚
猴哥完成签到,获得积分20
刚刚
1秒前
小仙完成签到,获得积分10
1秒前
yzwhust发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
愤怒的乐松完成签到,获得积分10
2秒前
李健应助干雅柏采纳,获得10
3秒前
青年才俊发布了新的文献求助10
3秒前
小w完成签到 ,获得积分20
3秒前
3秒前
4秒前
4秒前
STIAN发布了新的文献求助10
4秒前
liang发布了新的文献求助10
4秒前
Elio完成签到,获得积分20
4秒前
Mic应助半分糖采纳,获得10
4秒前
yumi应助姚yao采纳,获得20
4秒前
张兰兰发布了新的文献求助10
4秒前
栗心完成签到,获得积分10
5秒前
美丽的周应助阔达宛凝采纳,获得10
5秒前
5秒前
小w关注了科研通微信公众号
5秒前
可乐完成签到,获得积分10
6秒前
7秒前
7秒前
Mic应助lina采纳,获得10
7秒前
8秒前
niuya发布了新的文献求助10
8秒前
852应助hvgjgfjhgjh采纳,获得10
8秒前
SciGPT应助ty1996采纳,获得10
8秒前
姜落发布了新的文献求助10
9秒前
等等关注了科研通微信公众号
9秒前
小橘子不小关注了科研通微信公众号
9秒前
10秒前
yu完成签到,获得积分10
10秒前
高兴盼芙发布了新的文献求助10
10秒前
zzz完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430333
求助须知:如何正确求助?哪些是违规求助? 4543541
关于积分的说明 14187728
捐赠科研通 4461680
什么是DOI,文献DOI怎么找? 2446276
邀请新用户注册赠送积分活动 1437642
关于科研通互助平台的介绍 1414420