已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An SAR Target Classification Algorithm Based on the Central Coordinate Attention Module

计算机科学 合成孔径雷达 人工智能 计算机视觉 算法
作者
Jiaqiu Ai,Z. H. Qu,Zhicheng Zhao,Yong Zhang,Jun Shi,Hao Yan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1941-1952
标识
DOI:10.1109/jsen.2023.3338218
摘要

Recent studies show that the attention mechanism can greatly improve the performance of synthetic aperture radar (SAR) target classification. However, the existing attention models, such as squeeze-and-excitation (SE), convolutional block attention module (CBAM), and coordinate attention (CA), emphasize the importance of the attention features of different channels, different columns, or different rows, ignoring the importance of pixel-level feature in the attention feature maps. Moreover, these models ignore the center-distribution characteristic of the targets in SAR images, so the feature importance difference between the central target and the interference at the image borders cannot be well distinguished. As a consequence, they cannot achieve a high classification accuracy. In order to solve the above problems, this article proposes an SAR target classification algorithm based on the central CA module (CCAM). CCAM highlights those important pixels in the feature maps through a pixel-level attention feature fusion strategy. Therefore, the importance difference of each pixel in the feature maps can be well distinguished. In addition, CCAM designs a center-importance weighting kernel, which highlights the center-distribution characteristic information of the SAR targets in the images and weakens the interference at the image borders. Therefore, the feature importance difference between the central target and the interference at the image borders can be well distinguished. Finally, in order to achieve high efficiency, the proposed CCAM is incorporated into the convolutional neural network (CNN) for final SAR target classification. Undoubtedly, CCAM can greatly elevate the target feature representation completeness, thus improving the SAR target classification accuracy with a high efficiency. Experimental results on the MSTAR dataset verify the superiority and effectiveness of the proposed CCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇呀呀完成签到 ,获得积分10
5秒前
绮烟完成签到 ,获得积分10
8秒前
顾子墨完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
氟锑酸完成签到 ,获得积分10
13秒前
sora98完成签到 ,获得积分10
14秒前
14秒前
喜悦的小土豆完成签到 ,获得积分10
15秒前
16秒前
浮游应助仙女爱科研采纳,获得10
16秒前
17秒前
mr_wang发布了新的文献求助10
17秒前
炙热初柔发布了新的文献求助10
19秒前
灰灰完成签到 ,获得积分10
21秒前
川川完成签到,获得积分20
21秒前
Niki完成签到 ,获得积分10
22秒前
miyya发布了新的文献求助10
22秒前
贪玩的谷芹完成签到 ,获得积分10
24秒前
25秒前
jynihao完成签到,获得积分10
26秒前
温暖发布了新的文献求助10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
大个应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
GingerF应助科研通管家采纳,获得60
29秒前
上官若男应助科研通管家采纳,获得10
30秒前
30秒前
无花果应助ROC采纳,获得10
32秒前
yuyu完成签到,获得积分20
33秒前
jynihao发布了新的文献求助10
36秒前
鸭鸭完成签到 ,获得积分10
36秒前
qianyixingchen完成签到 ,获得积分10
37秒前
37秒前
yuyu发布了新的文献求助30
37秒前
我是老大应助舒心人达采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655