An SAR Target Classification Algorithm Based on the Central Coordinate Attention Module

计算机科学 合成孔径雷达 人工智能 计算机视觉 算法
作者
Jiaqiu Ai,Z. H. Qu,Zhicheng Zhao,Yong Zhang,Jun Shi,Hao Yan
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (2): 1941-1952
标识
DOI:10.1109/jsen.2023.3338218
摘要

Recent studies show that the attention mechanism can greatly improve the performance of synthetic aperture radar (SAR) target classification. However, the existing attention models, such as squeeze-and-excitation (SE), convolutional block attention module (CBAM), and coordinate attention (CA), emphasize the importance of the attention features of different channels, different columns, or different rows, ignoring the importance of pixel-level feature in the attention feature maps. Moreover, these models ignore the center-distribution characteristic of the targets in SAR images, so the feature importance difference between the central target and the interference at the image borders cannot be well distinguished. As a consequence, they cannot achieve a high classification accuracy. In order to solve the above problems, this article proposes an SAR target classification algorithm based on the central CA module (CCAM). CCAM highlights those important pixels in the feature maps through a pixel-level attention feature fusion strategy. Therefore, the importance difference of each pixel in the feature maps can be well distinguished. In addition, CCAM designs a center-importance weighting kernel, which highlights the center-distribution characteristic information of the SAR targets in the images and weakens the interference at the image borders. Therefore, the feature importance difference between the central target and the interference at the image borders can be well distinguished. Finally, in order to achieve high efficiency, the proposed CCAM is incorporated into the convolutional neural network (CNN) for final SAR target classification. Undoubtedly, CCAM can greatly elevate the target feature representation completeness, thus improving the SAR target classification accuracy with a high efficiency. Experimental results on the MSTAR dataset verify the superiority and effectiveness of the proposed CCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助solar采纳,获得30
刚刚
淡定的牛排完成签到,获得积分10
1秒前
dique3hao完成签到 ,获得积分10
2秒前
盼盼小面包完成签到 ,获得积分10
4秒前
科研通AI5应助曼凡采纳,获得10
4秒前
魔幻傲霜完成签到,获得积分10
5秒前
科研通AI2S应助夕诙采纳,获得20
5秒前
蓝天应助lezbj99采纳,获得10
7秒前
7秒前
SciGPT应助电池小能手采纳,获得10
7秒前
Qi发布了新的文献求助10
9秒前
忐忑的雁凡完成签到,获得积分10
9秒前
早日毕业完成签到,获得积分10
9秒前
liuhai发布了新的文献求助10
10秒前
肥仔完成签到,获得积分20
10秒前
张俊伟发布了新的文献求助10
10秒前
李健应助诗和远方采纳,获得10
10秒前
谷晋羽完成签到,获得积分10
11秒前
11秒前
蓝天应助alexyang采纳,获得10
12秒前
钙帮弟子完成签到,获得积分10
12秒前
12秒前
1111111完成签到,获得积分10
13秒前
PJ完成签到,获得积分10
14秒前
14秒前
肥仔发布了新的文献求助20
14秒前
KZ发布了新的文献求助10
15秒前
15秒前
15秒前
ff发布了新的文献求助10
16秒前
yyc666完成签到,获得积分10
17秒前
xfyxxh完成签到,获得积分10
18秒前
19秒前
19秒前
walkeryu发布了新的文献求助10
19秒前
shan完成签到,获得积分10
20秒前
yyc666发布了新的文献求助10
20秒前
紫荆完成签到,获得积分10
20秒前
NexusExplorer应助dick_zhang采纳,获得10
21秒前
gyh发布了新的文献求助10
21秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888