已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An SAR Target Classification Algorithm Based on the Central Coordinate Attention Module

计算机科学 合成孔径雷达 人工智能 计算机视觉 算法
作者
Jiaqiu Ai,Z. H. Qu,Zhicheng Zhao,Yong Zhang,Jun Shi,Hao Yan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1941-1952
标识
DOI:10.1109/jsen.2023.3338218
摘要

Recent studies show that the attention mechanism can greatly improve the performance of synthetic aperture radar (SAR) target classification. However, the existing attention models, such as squeeze-and-excitation (SE), convolutional block attention module (CBAM), and coordinate attention (CA), emphasize the importance of the attention features of different channels, different columns, or different rows, ignoring the importance of pixel-level feature in the attention feature maps. Moreover, these models ignore the center-distribution characteristic of the targets in SAR images, so the feature importance difference between the central target and the interference at the image borders cannot be well distinguished. As a consequence, they cannot achieve a high classification accuracy. In order to solve the above problems, this article proposes an SAR target classification algorithm based on the central CA module (CCAM). CCAM highlights those important pixels in the feature maps through a pixel-level attention feature fusion strategy. Therefore, the importance difference of each pixel in the feature maps can be well distinguished. In addition, CCAM designs a center-importance weighting kernel, which highlights the center-distribution characteristic information of the SAR targets in the images and weakens the interference at the image borders. Therefore, the feature importance difference between the central target and the interference at the image borders can be well distinguished. Finally, in order to achieve high efficiency, the proposed CCAM is incorporated into the convolutional neural network (CNN) for final SAR target classification. Undoubtedly, CCAM can greatly elevate the target feature representation completeness, thus improving the SAR target classification accuracy with a high efficiency. Experimental results on the MSTAR dataset verify the superiority and effectiveness of the proposed CCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brenna完成签到 ,获得积分10
2秒前
ccm应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
mashibeo应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
mashibeo应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得40
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
共享精神应助xwz626采纳,获得10
4秒前
reece完成签到 ,获得积分10
5秒前
8秒前
钰L发布了新的文献求助10
8秒前
优美的莹芝完成签到,获得积分10
13秒前
全鑫完成签到,获得积分10
14秒前
123关注了科研通微信公众号
14秒前
Ade完成签到,获得积分10
15秒前
哈哈完成签到 ,获得积分10
17秒前
跳跃的鹏飞完成签到 ,获得积分0
18秒前
博弈春秋发布了新的文献求助10
18秒前
科研通AI6应助Jodie采纳,获得10
19秒前
斯文败类应助是阿瑾呀采纳,获得10
20秒前
lmplzzp发布了新的文献求助30
21秒前
鱼鱼籽不认路完成签到 ,获得积分10
22秒前
fx完成签到 ,获得积分10
22秒前
bastien完成签到,获得积分10
24秒前
矜天完成签到 ,获得积分10
24秒前
牛牛的牛牛完成签到 ,获得积分10
25秒前
laity完成签到,获得积分20
25秒前
dly完成签到 ,获得积分10
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502