已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm

布莱顿循环 可用能 火用 托普西斯 集中太阳能 可再生能源 计算机科学 工艺工程 算法 工程类 数学优化 数学 机械工程 热交换器 运筹学 电气工程
作者
Asif Iqbal Turja,Md. Mahmudul Hasan,M. Monjurul Ehsan,Yasin Khan
出处
期刊:Energy and AI [Elsevier BV]
卷期号:15: 100327-100327 被引量:9
标识
DOI:10.1016/j.egyai.2023.100327
摘要

The present study is focused on multi-objective performance optimization & thermodynamic analysis from the perspectives of energy and exergy for Recompression, Partial Cooling & Main Compression Intercooling supercritical CO2 (sCO2) Brayton cycles for concentrated solar power (CSP) applications using machine learning algorithms. The novelty of this work lies in the integration of artificial neural networks (ANN) and genetic algorithms (GA) for optimizing the performance of advanced sCO2 power cycles considering climatic variation, which has significant implications for both the scientific community and engineering applications in the renewable energy sector. The methodology employed includes thermodynamic analysis based on energy, exergy & environmental factors including system performance optimization. The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component. Subsequently, thermodynamic model extracted dataset used for prediction & evaluation of Random Forest, XGBoost, KNN, AdaBoost, ANN and LightGBM algorithm. Finally, considering climate conditions, multi-objective optimization is carried out for the CSP integrated sCO2 Power cycle for optimal power output, exergy destruction, thermal and exergetic efficiency. Genetic algorithm and TOPSIS (technique for order of preference by similarity to ideal solution), multi-objective decision-making tool, were used to determine the optimum operating conditions. The major findings of this work reveal significant improvements in the performance of the advanced sCO2 cycle by 1.68% and 7.87% compared to conventional recompression and partial cooling cycle, respectively. This research could advance renewable energy technologies, particularly concentrated solar power, by improving power cycle designs to increase system efficiency and economic feasibility. Optimized advanced supercritical CO2 power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure, potentially opening new research avenues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清水完成签到,获得积分10
1秒前
昭昭如我愿完成签到,获得积分10
2秒前
天天快乐应助Billy采纳,获得10
2秒前
叫哥神手发布了新的文献求助10
3秒前
搜集达人应助日光下采纳,获得10
4秒前
娄高飞发布了新的文献求助10
5秒前
6秒前
桃子梅花完成签到 ,获得积分10
7秒前
10秒前
李大太阳发布了新的文献求助10
10秒前
11秒前
12秒前
科研通AI6应助www采纳,获得10
13秒前
姜姜完成签到 ,获得积分10
14秒前
berrypeng发布了新的文献求助10
14秒前
小二郎应助NING0611采纳,获得10
15秒前
廖书香完成签到,获得积分10
15秒前
自由丹雪发布了新的文献求助10
18秒前
苯苯发布了新的文献求助10
21秒前
糊涂呆完成签到 ,获得积分10
21秒前
今夜有雨完成签到 ,获得积分10
22秒前
23秒前
信哥哥发布了新的文献求助50
23秒前
23秒前
浮游应助积极牛青采纳,获得10
25秒前
25秒前
淇他人完成签到,获得积分20
26秒前
机灵柚子发布了新的文献求助10
28秒前
达瓦里希完成签到 ,获得积分10
28秒前
淇他人发布了新的文献求助10
29秒前
科研通AI5应助清爽的初之采纳,获得10
29秒前
科研通AI5应助小米粥采纳,获得10
29秒前
要减肥的安柏完成签到 ,获得积分10
30秒前
莫言发布了新的文献求助10
31秒前
Renie完成签到 ,获得积分10
31秒前
云遮月应助Arvinzhou采纳,获得20
32秒前
33秒前
浮游应助不安雨采纳,获得10
34秒前
ceeray23应助berrypeng采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899338
求助须知:如何正确求助?哪些是违规求助? 4179706
关于积分的说明 12975494
捐赠科研通 3943810
什么是DOI,文献DOI怎么找? 2163542
邀请新用户注册赠送积分活动 1181774
关于科研通互助平台的介绍 1087499