Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm

布莱顿循环 可用能 火用 托普西斯 集中太阳能 可再生能源 计算机科学 工艺工程 算法 工程类 数学优化 数学 机械工程 热交换器 运筹学 电气工程
作者
Asif Iqbal Turja,Md. Mahmudul Hasan,M. Monjurul Ehsan,Yasin Khan
出处
期刊:Energy and AI [Elsevier BV]
卷期号:15: 100327-100327 被引量:9
标识
DOI:10.1016/j.egyai.2023.100327
摘要

The present study is focused on multi-objective performance optimization & thermodynamic analysis from the perspectives of energy and exergy for Recompression, Partial Cooling & Main Compression Intercooling supercritical CO2 (sCO2) Brayton cycles for concentrated solar power (CSP) applications using machine learning algorithms. The novelty of this work lies in the integration of artificial neural networks (ANN) and genetic algorithms (GA) for optimizing the performance of advanced sCO2 power cycles considering climatic variation, which has significant implications for both the scientific community and engineering applications in the renewable energy sector. The methodology employed includes thermodynamic analysis based on energy, exergy & environmental factors including system performance optimization. The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component. Subsequently, thermodynamic model extracted dataset used for prediction & evaluation of Random Forest, XGBoost, KNN, AdaBoost, ANN and LightGBM algorithm. Finally, considering climate conditions, multi-objective optimization is carried out for the CSP integrated sCO2 Power cycle for optimal power output, exergy destruction, thermal and exergetic efficiency. Genetic algorithm and TOPSIS (technique for order of preference by similarity to ideal solution), multi-objective decision-making tool, were used to determine the optimum operating conditions. The major findings of this work reveal significant improvements in the performance of the advanced sCO2 cycle by 1.68% and 7.87% compared to conventional recompression and partial cooling cycle, respectively. This research could advance renewable energy technologies, particularly concentrated solar power, by improving power cycle designs to increase system efficiency and economic feasibility. Optimized advanced supercritical CO2 power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure, potentially opening new research avenues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WQQ发布了新的文献求助10
1秒前
楚江南完成签到,获得积分10
1秒前
超越俗尘完成签到,获得积分10
1秒前
ariaooo完成签到,获得积分10
1秒前
吕晓飞发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
环游世界完成签到 ,获得积分10
2秒前
dd完成签到,获得积分10
2秒前
张文静发布了新的文献求助10
3秒前
bkagyin应助Giroro_roro采纳,获得10
3秒前
桐桐应助fang采纳,获得10
4秒前
4秒前
turquoise应助zzjl采纳,获得10
4秒前
糖糖糖唐完成签到,获得积分10
4秒前
孙福禄应助quan采纳,获得10
4秒前
小蘑菇应助黑化小狗采纳,获得10
5秒前
JamesPei应助忐忑的远山采纳,获得20
5秒前
端庄不斜完成签到,获得积分10
5秒前
6秒前
今后应助外向的新儿采纳,获得10
6秒前
小锤发布了新的文献求助10
6秒前
HanruiWang完成签到,获得积分10
6秒前
7秒前
bkagyin应助机灵的怀绿采纳,获得10
7秒前
meiwei完成签到,获得积分10
8秒前
hw20010926完成签到 ,获得积分10
8秒前
dtf完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
松松关注了科研通微信公众号
10秒前
10秒前
大胆的以冬完成签到,获得积分10
10秒前
大方的觅海完成签到,获得积分10
11秒前
只如初发布了新的文献求助10
11秒前
SYLH应助斯文火龙果采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650