Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm

布莱顿循环 可用能 火用 托普西斯 集中太阳能 可再生能源 计算机科学 工艺工程 算法 工程类 数学优化 数学 机械工程 热交换器 运筹学 电气工程
作者
Asif Iqbal Turja,Md. Mahmudul Hasan,M. Monjurul Ehsan,Yasin Khan
出处
期刊:Energy and AI [Elsevier]
卷期号:15: 100327-100327 被引量:9
标识
DOI:10.1016/j.egyai.2023.100327
摘要

The present study is focused on multi-objective performance optimization & thermodynamic analysis from the perspectives of energy and exergy for Recompression, Partial Cooling & Main Compression Intercooling supercritical CO2 (sCO2) Brayton cycles for concentrated solar power (CSP) applications using machine learning algorithms. The novelty of this work lies in the integration of artificial neural networks (ANN) and genetic algorithms (GA) for optimizing the performance of advanced sCO2 power cycles considering climatic variation, which has significant implications for both the scientific community and engineering applications in the renewable energy sector. The methodology employed includes thermodynamic analysis based on energy, exergy & environmental factors including system performance optimization. The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component. Subsequently, thermodynamic model extracted dataset used for prediction & evaluation of Random Forest, XGBoost, KNN, AdaBoost, ANN and LightGBM algorithm. Finally, considering climate conditions, multi-objective optimization is carried out for the CSP integrated sCO2 Power cycle for optimal power output, exergy destruction, thermal and exergetic efficiency. Genetic algorithm and TOPSIS (technique for order of preference by similarity to ideal solution), multi-objective decision-making tool, were used to determine the optimum operating conditions. The major findings of this work reveal significant improvements in the performance of the advanced sCO2 cycle by 1.68% and 7.87% compared to conventional recompression and partial cooling cycle, respectively. This research could advance renewable energy technologies, particularly concentrated solar power, by improving power cycle designs to increase system efficiency and economic feasibility. Optimized advanced supercritical CO2 power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure, potentially opening new research avenues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐的猫咪完成签到 ,获得积分10
刚刚
小姜发布了新的文献求助10
刚刚
听闻完成签到,获得积分10
刚刚
zyyyyyy完成签到,获得积分10
刚刚
1秒前
冷酷的啤酒完成签到,获得积分10
1秒前
白月光完成签到,获得积分10
1秒前
想发sci完成签到,获得积分10
2秒前
荒野小蚂蚁完成签到,获得积分10
2秒前
梦璃完成签到,获得积分10
3秒前
JackFan完成签到,获得积分10
4秒前
刘珍荣完成签到,获得积分10
5秒前
CC完成签到 ,获得积分10
5秒前
Ava应助雨醉东风采纳,获得10
5秒前
6秒前
7秒前
丸子完成签到 ,获得积分10
8秒前
Bran完成签到,获得积分10
8秒前
yxy999完成签到,获得积分10
9秒前
俊逸书琴完成签到 ,获得积分10
9秒前
桐桐应助大山采纳,获得30
9秒前
可爱的函函应助DavidWebb采纳,获得10
9秒前
向上先生完成签到,获得积分10
10秒前
都是应助露露采纳,获得20
10秒前
斯文败类应助轻歌水越采纳,获得10
10秒前
10秒前
11秒前
Roach完成签到,获得积分10
11秒前
pan完成签到,获得积分10
11秒前
simple发布了新的文献求助10
11秒前
hh完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助西北望采纳,获得10
12秒前
ZYC007完成签到,获得积分10
12秒前
13秒前
NexusExplorer应助apple采纳,获得10
13秒前
cccc完成签到,获得积分10
13秒前
13秒前
springkaka完成签到,获得积分0
14秒前
shy完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565