Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm

布莱顿循环 可用能 火用 托普西斯 集中太阳能 可再生能源 计算机科学 工艺工程 算法 工程类 数学优化 数学 机械工程 热交换器 运筹学 电气工程
作者
Asif Iqbal Turja,Md. Mahmudul Hasan,M. Monjurul Ehsan,Yasin Khan
出处
期刊:Energy and AI [Elsevier]
卷期号:15: 100327-100327 被引量:9
标识
DOI:10.1016/j.egyai.2023.100327
摘要

The present study is focused on multi-objective performance optimization & thermodynamic analysis from the perspectives of energy and exergy for Recompression, Partial Cooling & Main Compression Intercooling supercritical CO2 (sCO2) Brayton cycles for concentrated solar power (CSP) applications using machine learning algorithms. The novelty of this work lies in the integration of artificial neural networks (ANN) and genetic algorithms (GA) for optimizing the performance of advanced sCO2 power cycles considering climatic variation, which has significant implications for both the scientific community and engineering applications in the renewable energy sector. The methodology employed includes thermodynamic analysis based on energy, exergy & environmental factors including system performance optimization. The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component. Subsequently, thermodynamic model extracted dataset used for prediction & evaluation of Random Forest, XGBoost, KNN, AdaBoost, ANN and LightGBM algorithm. Finally, considering climate conditions, multi-objective optimization is carried out for the CSP integrated sCO2 Power cycle for optimal power output, exergy destruction, thermal and exergetic efficiency. Genetic algorithm and TOPSIS (technique for order of preference by similarity to ideal solution), multi-objective decision-making tool, were used to determine the optimum operating conditions. The major findings of this work reveal significant improvements in the performance of the advanced sCO2 cycle by 1.68% and 7.87% compared to conventional recompression and partial cooling cycle, respectively. This research could advance renewable energy technologies, particularly concentrated solar power, by improving power cycle designs to increase system efficiency and economic feasibility. Optimized advanced supercritical CO2 power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure, potentially opening new research avenues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Ada采纳,获得10
1秒前
1秒前
简单绯发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助30
2秒前
桐桐应助聪慧紫蓝采纳,获得10
2秒前
tang应助zz采纳,获得10
2秒前
悦耳难摧发布了新的文献求助10
3秒前
nuo发布了新的文献求助20
3秒前
lilili完成签到,获得积分10
3秒前
快快快快快快快快快完成签到 ,获得积分10
4秒前
zky关闭了zky文献求助
4秒前
amazeman111发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Christina发布了新的文献求助30
5秒前
5秒前
lilili发布了新的文献求助10
6秒前
6秒前
xingxing发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
www发布了新的文献求助10
7秒前
香蕉觅云应助激昂的幻梦采纳,获得10
7秒前
7秒前
willen完成签到,获得积分10
8秒前
大个应助小皮艇采纳,获得10
8秒前
晒晒发布了新的文献求助10
8秒前
活着完成签到 ,获得积分10
9秒前
9秒前
李健的小迷弟应助帅玉玉采纳,获得10
9秒前
xxh完成签到,获得积分10
9秒前
10秒前
10秒前
平常丝发布了新的文献求助10
10秒前
vz7发布了新的文献求助10
11秒前
qbxiaojie完成签到,获得积分10
11秒前
思源应助勤恳万宝路采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095