Data-augmented landslide displacement prediction using generative adversarial network

均方误差 流离失所(心理学) 山崩 地质学 计算机科学 支持向量机 机器学习 人工智能 匹配(统计) 数据挖掘 统计 数学 地震学 心理学 心理治疗师
作者
Qi Ge,Jin Li,Suzanne Lacasse,Hongyue Sun,Zhongqiang Liu
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:16 (10): 4017-4033 被引量:11
标识
DOI:10.1016/j.jrmge.2024.01.003
摘要

Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide. Accurately predicting landslide displacement enables effective early warning and risk management. However, the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models, such as state-of-the-art machine learning (ML) models. To address these challenges, this study proposes a data augmentation framework that uses generative adversarial networks (GANs), a recent advance in generative artificial intelligence (AI), to improve the accuracy of landslide displacement prediction. The framework provides effective data augmentation to enhance limited datasets. A recurrent GAN model, RGAN-LS, is proposed, specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data. A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data. Then, the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory (LSTM) networks and particle swarm optimization-support vector machine (PSO-SVM) models for landslide displacement prediction tasks. Results on two landslides in the Three Gorges Reservoir (TGR) region show a significant improvement in LSTM model prediction performance when trained on augmented data. For instance, in the case of the Baishuihe landslide, the average root mean square error (RMSE) increases by 16.11%, and the mean absolute error (MAE) by 17.59%. More importantly, the model's responsiveness during mutational stages is enhanced for early warning purposes. However, the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM. Further analysis indicates that an optimal synthetic-to-real data ratio (50% on the illustration cases) maximizes the improvements. This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results. By using the powerful generative AI approach, RGAN-LS can generate high-fidelity synthetic landslide data. This is critical for improving the performance of advanced ML models in predicting landslide displacement, particularly when there are limited training data. Additionally, this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助HHHHTTTT采纳,获得10
4秒前
ctrl少个T完成签到,获得积分20
5秒前
sik发布了新的文献求助10
5秒前
5秒前
6秒前
Jasper应助温柔梦松采纳,获得10
6秒前
21完成签到,获得积分10
7秒前
7秒前
华仔应助笑点低的沉鱼采纳,获得10
7秒前
酷炫蛋挞完成签到 ,获得积分10
8秒前
cjw完成签到 ,获得积分10
9秒前
bkagyin应助hyjhhy采纳,获得10
10秒前
马甲甲完成签到,获得积分10
10秒前
10秒前
ctrl少个T发布了新的文献求助10
10秒前
10秒前
王晓风完成签到,获得积分10
10秒前
白踏歌发布了新的文献求助10
11秒前
11秒前
12秒前
Mumu发布了新的文献求助10
13秒前
所所应助快乐的小央采纳,获得10
13秒前
自然枫发布了新的文献求助10
14秒前
布吉岛发布了新的文献求助10
15秒前
充电宝应助Yuan88采纳,获得30
15秒前
王晓风发布了新的文献求助10
15秒前
椰子在长江送礼物应助BLUE采纳,获得10
17秒前
椰子在长江送礼物应助BLUE采纳,获得10
17秒前
淡定冰双完成签到,获得积分10
18秒前
18秒前
月亮moon完成签到 ,获得积分10
18秒前
Sparks完成签到,获得积分20
19秒前
20秒前
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
Auston_zhong应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755293
求助须知:如何正确求助?哪些是违规求助? 3298360
关于积分的说明 10105289
捐赠科研通 3013032
什么是DOI,文献DOI怎么找? 1654979
邀请新用户注册赠送积分活动 789314
科研通“疑难数据库(出版商)”最低求助积分说明 753273