A multi-stage forecasting system for daily ocean tidal energy based on secondary decomposition, optimized gate recurrent unit and error correction

希尔伯特-黄变换 均方误差 算法 模式(计算机接口) 潮汐能 计算机科学 人工智能 滤波器(信号处理) 统计 工程类 数学 操作系统 计算机视觉 海洋工程
作者
Hong Yang,Qingsong Wu,Guohui Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:449: 141303-141303 被引量:17
标识
DOI:10.1016/j.jclepro.2024.141303
摘要

Tidal energy, as a new energy, has very high research potential and practical application value. For the characteristics of tidal energy such as nonstationarity and nonlinearity, a multi-stage forecasting system for daily ocean tidal energy is proposed. It is based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), refined composite multi-scale dispersion entropy (RCMDE), empirical mode decomposition based on time-varying filter modified by white shark optimizer (WSOTVFEMD), improved gate recurrent unit using parasitic salp swarm algorithm based on differential evolution (PDESSAGRU) and error correction using CNN (CNN-EC), named as ICEEMDAN-RCMDE-WSOTVFEMD-PDESSAGRU–CNN–EC. Firstly, decompose tidal energy into a series of intrinsic mode functions (IMFs) by ICEEMDAN, and divide IMFs into high-complexity and low-complexity components by RCMDE. Next, secondly decompose the reconstructed high-complexity components into high-complexity parts by WSOTVFEMD. Afterwards, separately predict each component of the high-complexity parts and the low-complexity components by PDESSA, and reconstruct the predicted results to obtain original predicting results. In the end, decompose the error into error IMFs (EIMFs) by ICEEMDAN, predict EIMFs with convolutional neural network (CNN) respectively to acquire error predicting results, and reconstruct original predicting results and error predicting results to acquire the final results. Taking the tidal energy of the American cities including San Francisco, Sitka, and Wauna as case studies, the results show that the proposed system has high prediction accuracy after experiments with 13 comparative models in each city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcydd发布了新的文献求助10
刚刚
1秒前
aurora发布了新的文献求助30
1秒前
nihaoya172应助fsm采纳,获得20
1秒前
2秒前
3秒前
3秒前
共享精神应助阳子采纳,获得10
3秒前
木木发布了新的文献求助10
3秒前
3秒前
外科医生完成签到,获得积分10
4秒前
科研通AI5应助王小小采纳,获得10
4秒前
5秒前
薄荷完成签到,获得积分10
5秒前
被划分发布了新的文献求助10
6秒前
二号发布了新的文献求助10
6秒前
7秒前
胖胖应助longtengfei采纳,获得10
7秒前
老实怀蝶发布了新的文献求助10
8秒前
沙耶完成签到,获得积分10
8秒前
星辰大海应助多变的卡宾采纳,获得10
8秒前
nihaoya172应助合适服饰采纳,获得30
8秒前
9秒前
neya发布了新的文献求助10
9秒前
10秒前
呵tui发布了新的文献求助10
10秒前
斯文败类应助二号采纳,获得10
10秒前
yys完成签到 ,获得积分10
11秒前
斯文败类应助Ren采纳,获得10
12秒前
zhang完成签到,获得积分10
12秒前
小蘑菇应助沙耶采纳,获得200
13秒前
小飞七应助HTY采纳,获得10
15秒前
科研通AI5应助HTY采纳,获得10
15秒前
科研通AI5应助HTY采纳,获得10
15秒前
胖胖应助HTY采纳,获得10
15秒前
stuffmatter发布了新的文献求助10
16秒前
ZMF完成签到,获得积分10
16秒前
16秒前
小马甲应助某某采纳,获得10
17秒前
lexia完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126