Short-term photovoltaic power forecasting using parameter-optimized variational mode decomposition and attention-based neural network

期限(时间) 人工神经网络 光伏系统 分解 功率(物理) 模式(计算机接口) 计算机科学 控制理论(社会学) 人工智能 工程类 物理 电气工程 化学 热力学 控制(管理) 有机化学 量子力学 操作系统
作者
Kejun Tao,Jinghao Zhao,Nana Wang,Ye Tao,Yajun Tian
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 3807-3824 被引量:2
标识
DOI:10.1080/15567036.2024.2323158
摘要

Photovoltaic power generation is impacted by various meteorological factors leading to significant intermittent and volatile, so dispatch of photovoltaic power plants and safe operation of power systems hinge on accurate prediction of PV power output. Researchers have proposed a variety of ways to improve the performance of predictions, and a hybrid model often performs better than a single model. Considering that the sequence decomposition method can alleviate the volatile nature of the original sequence, we propose a new hybrid model VMD-GA-Conv-A-LSTM, design a method to determine the optimal parameters of the VMD and utilize the parameter-optimized VMD for sequence decomposition, combining with a novel deep learning model for more accurate prediction. The model first calculates the optimal parameters for the variational mode decomposition (VMD) using a search algorithm over a specified parameter range, and uses these parameters to decompose the photovoltaic power sequence into several sub-sequences. Then, the sub-sequences and preprocessed historical meteorological data are input into several long short-term memory (LSTM) integrated with 1D convolution and attention mechanism (Conv-A-LSTM) separately. The predictions corresponding to each sub-sequence are accumulated to get the predictions of the hybrid model. The hybrid model was validated on the dataset generated from the 5.20 kW Photovoltaic site in Alice Springs, Australia, and ERA5 data, respectively. Compared with baseline models, the proposed hybrid model achieves the best prediction accuracy. The RMSE, MAE, and R2 of the 2-hour prediction performed on the Australia dataset are 0.1884 kW, 0.0758 kW and 0.9876, respectively. Therefore, the hybrid model proposed in this study is able to provide statistical data support for photovoltaic plant operation and scheduling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzaaaaa完成签到,获得积分10
刚刚
orchid发布了新的文献求助10
1秒前
llll发布了新的文献求助10
2秒前
2秒前
李正安完成签到,获得积分10
4秒前
啵啵小甜狗完成签到,获得积分10
5秒前
qiu完成签到,获得积分20
5秒前
5秒前
0031完成签到 ,获得积分10
8秒前
8秒前
再睡十分钟完成签到 ,获得积分10
9秒前
moon发布了新的文献求助10
9秒前
11秒前
12秒前
无限的盼晴完成签到,获得积分20
12秒前
13秒前
zys完成签到 ,获得积分10
13秒前
renshiq完成签到,获得积分10
13秒前
13秒前
科目三应助orchid采纳,获得10
16秒前
16秒前
陶醉之玉完成签到,获得积分10
17秒前
Maddy完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
bobobo发布了新的文献求助10
18秒前
Enkcy发布了新的文献求助10
18秒前
CGEA完成签到,获得积分10
18秒前
wuyuan完成签到,获得积分10
19秒前
酷波er应助臻灏采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
风驻云停完成签到,获得积分10
21秒前
Ava应助隔壁的邻家小兴采纳,获得10
23秒前
等待的道消完成签到 ,获得积分10
23秒前
无极微光应助过时的访梦采纳,获得20
23秒前
xiaoxie发布了新的文献求助20
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176