Short-term photovoltaic power forecasting using parameter-optimized variational mode decomposition and attention-based neural network

期限(时间) 人工神经网络 光伏系统 分解 功率(物理) 模式(计算机接口) 计算机科学 控制理论(社会学) 人工智能 工程类 物理 电气工程 化学 热力学 控制(管理) 有机化学 量子力学 操作系统
作者
Kejie Tao,Jinghao Zhao,Nana Wang,Ye Tao,Yajun Tian
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 3807-3824 被引量:2
标识
DOI:10.1080/15567036.2024.2323158
摘要

Photovoltaic power generation is impacted by various meteorological factors leading to significant intermittent and volatile, so dispatch of photovoltaic power plants and safe operation of power systems hinge on accurate prediction of PV power output. Researchers have proposed a variety of ways to improve the performance of predictions, and a hybrid model often performs better than a single model. Considering that the sequence decomposition method can alleviate the volatile nature of the original sequence, we propose a new hybrid model VMD-GA-Conv-A-LSTM, design a method to determine the optimal parameters of the VMD and utilize the parameter-optimized VMD for sequence decomposition, combining with a novel deep learning model for more accurate prediction. The model first calculates the optimal parameters for the variational mode decomposition (VMD) using a search algorithm over a specified parameter range, and uses these parameters to decompose the photovoltaic power sequence into several sub-sequences. Then, the sub-sequences and preprocessed historical meteorological data are input into several long short-term memory (LSTM) integrated with 1D convolution and attention mechanism (Conv-A-LSTM) separately. The predictions corresponding to each sub-sequence are accumulated to get the predictions of the hybrid model. The hybrid model was validated on the dataset generated from the 5.20 kW Photovoltaic site in Alice Springs, Australia, and ERA5 data, respectively. Compared with baseline models, the proposed hybrid model achieves the best prediction accuracy. The RMSE, MAE, and R2 of the 2-hour prediction performed on the Australia dataset are 0.1884 kW, 0.0758 kW and 0.9876, respectively. Therefore, the hybrid model proposed in this study is able to provide statistical data support for photovoltaic plant operation and scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YaoX完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
YE发布了新的文献求助10
2秒前
2秒前
3秒前
张肥肥完成签到 ,获得积分20
3秒前
明亮的斩关注了科研通微信公众号
3秒前
科研通AI5应助搞怪的人龙采纳,获得10
3秒前
4秒前
xiuxiu_27完成签到 ,获得积分10
4秒前
李健应助qym采纳,获得10
5秒前
风趣的爆米花完成签到,获得积分20
5秒前
韭菜发布了新的文献求助10
5秒前
5秒前
5秒前
yzxzdm完成签到 ,获得积分10
6秒前
小破仁666发布了新的文献求助10
6秒前
6秒前
英姑应助优秀的逊采纳,获得10
7秒前
ccc完成签到,获得积分20
7秒前
7秒前
7秒前
小二郎应助诗谙采纳,获得10
7秒前
7秒前
7秒前
圣晟胜发布了新的文献求助10
8秒前
8秒前
等待幼荷完成签到,获得积分10
8秒前
笑言相欢ZMN完成签到,获得积分20
8秒前
8秒前
Eric发布了新的文献求助10
8秒前
gaos发布了新的文献求助10
9秒前
9秒前
9秒前
ipeakkka发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740