Short-term photovoltaic power forecasting using parameter-optimized variational mode decomposition and attention-based neural network

期限(时间) 人工神经网络 光伏系统 分解 功率(物理) 模式(计算机接口) 计算机科学 控制理论(社会学) 人工智能 工程类 物理 电气工程 化学 热力学 控制(管理) 有机化学 量子力学 操作系统
作者
Kejun Tao,Jinghao Zhao,Nana Wang,Ye Tao,Yajun Tian
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 3807-3824 被引量:2
标识
DOI:10.1080/15567036.2024.2323158
摘要

Photovoltaic power generation is impacted by various meteorological factors leading to significant intermittent and volatile, so dispatch of photovoltaic power plants and safe operation of power systems hinge on accurate prediction of PV power output. Researchers have proposed a variety of ways to improve the performance of predictions, and a hybrid model often performs better than a single model. Considering that the sequence decomposition method can alleviate the volatile nature of the original sequence, we propose a new hybrid model VMD-GA-Conv-A-LSTM, design a method to determine the optimal parameters of the VMD and utilize the parameter-optimized VMD for sequence decomposition, combining with a novel deep learning model for more accurate prediction. The model first calculates the optimal parameters for the variational mode decomposition (VMD) using a search algorithm over a specified parameter range, and uses these parameters to decompose the photovoltaic power sequence into several sub-sequences. Then, the sub-sequences and preprocessed historical meteorological data are input into several long short-term memory (LSTM) integrated with 1D convolution and attention mechanism (Conv-A-LSTM) separately. The predictions corresponding to each sub-sequence are accumulated to get the predictions of the hybrid model. The hybrid model was validated on the dataset generated from the 5.20 kW Photovoltaic site in Alice Springs, Australia, and ERA5 data, respectively. Compared with baseline models, the proposed hybrid model achieves the best prediction accuracy. The RMSE, MAE, and R2 of the 2-hour prediction performed on the Australia dataset are 0.1884 kW, 0.0758 kW and 0.9876, respectively. Therefore, the hybrid model proposed in this study is able to provide statistical data support for photovoltaic plant operation and scheduling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hellzhu完成签到,获得积分10
刚刚
动听元正发布了新的文献求助10
1秒前
1秒前
see完成签到,获得积分10
1秒前
1秒前
2秒前
坦率凝琴发布了新的文献求助10
2秒前
隐形曼青应助jliu采纳,获得10
2秒前
黄兆强发布了新的文献求助10
4秒前
ad完成签到,获得积分10
4秒前
文成发布了新的文献求助10
4秒前
大胆夏柳发布了新的文献求助10
4秒前
4秒前
啦啦完成签到,获得积分10
4秒前
4秒前
ma636908发布了新的文献求助10
5秒前
5秒前
peir发布了新的文献求助10
5秒前
yu发布了新的文献求助10
5秒前
5秒前
6秒前
噼里啪啦完成签到,获得积分10
6秒前
MaYue完成签到,获得积分10
6秒前
优秀发布了新的文献求助10
6秒前
6秒前
sansronds完成签到,获得积分10
7秒前
tiezhu发布了新的文献求助10
7秒前
俏皮的采蓝完成签到,获得积分10
8秒前
9秒前
zzz完成签到,获得积分10
9秒前
科研通AI2S应助coesite采纳,获得10
9秒前
9秒前
Jenna完成签到 ,获得积分10
10秒前
科研通AI6应助Brian采纳,获得10
11秒前
11秒前
Polaris发布了新的文献求助10
11秒前
vily发布了新的文献求助10
11秒前
bianlllll发布了新的文献求助10
12秒前
HDJ发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793