已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing Spiking Neural Networks Toward Deep Residual Learning

尖峰神经网络 残余物 神经形态工程学 失败 残差神经网络 深度学习 人工智能 可扩展性 计算机科学 人工神经网络 依赖关系(UML) 机器学习 深层神经网络 范围(计算机科学) 模式识别(心理学) 并行计算 算法 数据库 程序设计语言
作者
Yifan Hu,Lei Deng,Yujie Wu,Man Yao,Guoqi Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2353-2367 被引量:23
标识
DOI:10.1109/tnnls.2024.3355393
摘要

Despite the rapid progress of neuromorphic computing, inadequate capacity and insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assessed their applicability to the specifics of SNNs. In this article, we first identify that this negligence leads to impeded information flow and the accompanying degradation problem in a spiking version of vanilla ResNet. To address this issue, we propose a novel SNN-oriented residual architecture termed MS-ResNet, which establishes membrane-based shortcut pathways, and further proves that the gradient norm equality can be achieved in MS-ResNet by introducing block dynamical isometry theory, which ensures the network can be well-behaved in a depth-insensitive way. Thus, we are able to significantly extend the depth of directly trained SNNs, e.g., up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. To validate the effectiveness of MS-ResNet, experiments on both frame-based and neuromorphic datasets are conducted. MS-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, which is the highest to the best of our knowledge in the domain of directly trained SNNs. Great energy efficiency is also observed, with an average of only one spike per neuron needed to classify an input sample. We believe our powerful and scalable models will provide strong support for further exploration of SNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助过时的如雪采纳,获得10
刚刚
章鱼发布了新的文献求助10
刚刚
小航完成签到 ,获得积分10
1秒前
2秒前
wy.he举报熙欢求助涉嫌违规
3秒前
希望天下0贩的0应助thchiang采纳,获得10
4秒前
顾矜应助song采纳,获得10
4秒前
5秒前
蓦然回首发布了新的文献求助10
6秒前
6秒前
金鸡奖发布了新的文献求助10
6秒前
7秒前
NexusExplorer应助feihu采纳,获得10
11秒前
饱满破茧发布了新的文献求助10
12秒前
哈哈大笑完成签到,获得积分10
13秒前
YISAN发布了新的文献求助200
16秒前
vicky发布了新的文献求助10
19秒前
19秒前
过时的如雪完成签到,获得积分10
20秒前
HannahLL完成签到,获得积分10
20秒前
可爱的函函应助changeL采纳,获得10
20秒前
简让完成签到 ,获得积分10
21秒前
脑洞疼应助章鱼采纳,获得10
22秒前
feihu发布了新的文献求助10
23秒前
任性雪糕发布了新的文献求助10
25秒前
传奇3应助sqdr2采纳,获得10
25秒前
25秒前
jjjjchou完成签到,获得积分10
27秒前
迟大猫应助110采纳,获得10
28秒前
Diego完成签到,获得积分10
29秒前
Akim应助xwwx采纳,获得10
31秒前
32秒前
闫栋完成签到 ,获得积分10
33秒前
迟大猫应助科研通管家采纳,获得10
34秒前
所所应助科研通管家采纳,获得10
34秒前
爱静静应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得10
34秒前
大个应助科研通管家采纳,获得10
34秒前
迟大猫应助科研通管家采纳,获得10
34秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109