Image Segmentation Using Bayesian Inference for Convex Variant Mumford–Shah Variational Model

推论 人工智能 正多边形 分割 贝叶斯推理 图像分割 图像(数学) 数学 贝叶斯概率 模式识别(心理学) 凸分析 计算机视觉 计算机科学 算法 凸优化 几何学
作者
Xu Xiao,You‐Wei Wen,Raymond H. Chan,Tieyong Zeng
出处
期刊:Siam Journal on Imaging Sciences [Society for Industrial and Applied Mathematics]
卷期号:17 (1): 248-272
标识
DOI:10.1137/23m1545379
摘要

.The Mumford–Shah model is a classical segmentation model, but its objective function is nonconvex. The smoothing and thresholding (SaT) approach is a convex variant of the Mumford–Shah model, which seeks a smoothed approximation solution to the Mumford–Shah model. The SaT approach separates the segmentation into two stages: first, a convex energy function is minimized to obtain a smoothed image; then, a thresholding technique is applied to segment the smoothed image. The energy function consists of three weighted terms and the weights are called the regularization parameters. Selecting appropriate regularization parameters is crucial to achieving effective segmentation results. Traditionally, the regularization parameters are chosen by trial-and-error, which is a very time-consuming procedure and is not practical in real applications. In this paper, we apply a Bayesian inference approach to infer the regularization parameters and estimate the smoothed image. We analyze the convex variant Mumford–Shah variational model from a statistical perspective and then construct a hierarchical Bayesian model. A mean field variational family is used to approximate the posterior distribution. The variational density of the smoothed image is assumed to have a Gaussian density, and the hyperparameters are assumed to have Gamma variational densities. All the parameters in the Gaussian density and Gamma densities are iteratively updated. Experimental results show that the proposed approach is capable of generating high-quality segmentation results. Although the proposed approach contains an inference step to estimate the regularization parameters, it requires less CPU running time to obtain the smoothed image than previous methods.Keywordsimage segmentationMumford–Shah modelBayesian inferencemean field variational approximationregularization parametersMSC codes68-U1094-A0890-C9962-F99
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素千亦发布了新的文献求助10
1秒前
桃子应助zzq采纳,获得10
3秒前
海盗完成签到,获得积分10
7秒前
8秒前
不吃了完成签到 ,获得积分0
8秒前
WY发布了新的文献求助10
11秒前
15秒前
17秒前
朴素千亦完成签到,获得积分10
17秒前
不懈奋进应助了了采纳,获得30
19秒前
ccccccc完成签到,获得积分10
20秒前
21秒前
背后如雪发布了新的文献求助10
22秒前
上善若火完成签到 ,获得积分10
22秒前
denghuiying完成签到,获得积分10
27秒前
28秒前
28秒前
aike完成签到,获得积分10
28秒前
LeimingDai发布了新的文献求助10
32秒前
LaTeXer应助喝杯水再走采纳,获得50
34秒前
Ava应助背后如雪采纳,获得10
34秒前
35秒前
35秒前
大方的白开水完成签到 ,获得积分10
36秒前
吕和奇发布了新的文献求助30
38秒前
38秒前
豆腐宣誓完成签到,获得积分10
39秒前
尊敬的夏槐完成签到,获得积分10
40秒前
41秒前
HHR33完成签到,获得积分10
42秒前
ssw完成签到,获得积分10
42秒前
苏诗兰发布了新的文献求助10
43秒前
小二郎应助酷酷小子采纳,获得10
44秒前
happy应助酷酷小子采纳,获得10
44秒前
44秒前
44秒前
HHR33发布了新的文献求助10
44秒前
缓慢的如波完成签到,获得积分10
46秒前
46秒前
怂怂鼠完成签到 ,获得积分10
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080