DATA COLLECTION AND PERFORMANCE EVALUATION OF RUNNING TRAINING SPORT USING DIFFERENT NEURAL NETWORK TECHNIQUES

步伐 人工神经网络 计算机科学 循环神经网络 机器学习 跨步 节奏 人工智能 试验数据 工程类 大地测量学 电子工程 计算机安全 程序设计语言 地理
作者
CAIRU YANG,Yu-Teng Chang
出处
期刊:Journal of Mechanics in Medicine and Biology 卷期号:23 (04) 被引量:4
标识
DOI:10.1142/s0219519423400535
摘要

With the increasing engagement of human beings in the pursuit of healthcare, running as a sport has become a fashionable and healthcare first choice. This research uses artificial intelligence technology to carry out intelligent analysis when conducting running training. Artificial intelligence technology can accurately analyze and predict the application requirements of sports training postures. We proposed an analysis of sports posture and a prediction system, which uses running training data in the form of a heart rate, recorded on a GPS smart sports watch, as well as using the recurrent neural network (RNN), long and short-term memory (LSTM) and the gate recursive unit (GRU). These three types of neural network methods can predict which method is best suited for a road race and can confirm that it will be completed within the scheduled finish time; these models will also perform an intelligent analysis of physical fitness (heart rate, pace) and running technology (cadence, pace). The training and test data are collected from the running training records (running distance, time, heart rate, stride frequency, stride length, pace, calories, altitude and other characteristic values) as input parameters, to test and compare the running completion time trends of the RNN, LSTM and GRU neural network methods in the exercise table, so as to evaluate their predictive abilities. The results show that the GRU method has the best predictive accuracy, and the least accurate is the LSTM method. After the hidden layers are added to the three predictive methods, the RNN is slightly regressive, the LSTM indicates a trend of significant improvement and the GRU exhibits less obvious changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
run完成签到 ,获得积分10
刚刚
善学以致用应助dake采纳,获得10
刚刚
在水一方应助年轻的丹亦采纳,获得10
1秒前
baby的跑男发布了新的文献求助10
1秒前
小瓷发布了新的文献求助10
4秒前
4秒前
胡思乱想完成签到,获得积分20
5秒前
rover完成签到 ,获得积分10
5秒前
7秒前
简单应助David采纳,获得20
8秒前
10秒前
Ava应助baby的跑男采纳,获得10
10秒前
11秒前
感动的嚓茶完成签到,获得积分10
12秒前
13秒前
风衣拖地完成签到 ,获得积分10
14秒前
yueyao发布了新的文献求助10
14秒前
15秒前
quanjiazhi发布了新的文献求助10
15秒前
wanci发布了新的文献求助10
16秒前
双龙戏珠啊完成签到,获得积分10
16秒前
彭于彦祖应助酷酷李可爱婕采纳,获得100
17秒前
橙子味的邱憨憨完成签到 ,获得积分10
17秒前
小西完成签到,获得积分10
17秒前
17秒前
小瓷完成签到,获得积分10
18秒前
18秒前
Ll发布了新的文献求助10
19秒前
orixero应助ZXH采纳,获得10
22秒前
ab发布了新的文献求助10
22秒前
23秒前
24秒前
顾矜应助Crazy_Runner采纳,获得10
24秒前
cocolu应助liuk采纳,获得10
25秒前
25秒前
NexusExplorer应助sy采纳,获得10
27秒前
27秒前
研友_nVqwxL发布了新的文献求助10
29秒前
czwu完成签到,获得积分10
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574