DATA COLLECTION AND PERFORMANCE EVALUATION OF RUNNING TRAINING SPORT USING DIFFERENT NEURAL NETWORK TECHNIQUES

步伐 人工神经网络 计算机科学 循环神经网络 机器学习 跨步 节奏 人工智能 试验数据 工程类 计算机安全 大地测量学 电子工程 程序设计语言 地理
作者
CAIRU YANG,Yu-Teng Chang
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:23 (04) 被引量:4
标识
DOI:10.1142/s0219519423400535
摘要

With the increasing engagement of human beings in the pursuit of healthcare, running as a sport has become a fashionable and healthcare first choice. This research uses artificial intelligence technology to carry out intelligent analysis when conducting running training. Artificial intelligence technology can accurately analyze and predict the application requirements of sports training postures. We proposed an analysis of sports posture and a prediction system, which uses running training data in the form of a heart rate, recorded on a GPS smart sports watch, as well as using the recurrent neural network (RNN), long and short-term memory (LSTM) and the gate recursive unit (GRU). These three types of neural network methods can predict which method is best suited for a road race and can confirm that it will be completed within the scheduled finish time; these models will also perform an intelligent analysis of physical fitness (heart rate, pace) and running technology (cadence, pace). The training and test data are collected from the running training records (running distance, time, heart rate, stride frequency, stride length, pace, calories, altitude and other characteristic values) as input parameters, to test and compare the running completion time trends of the RNN, LSTM and GRU neural network methods in the exercise table, so as to evaluate their predictive abilities. The results show that the GRU method has the best predictive accuracy, and the least accurate is the LSTM method. After the hidden layers are added to the three predictive methods, the RNN is slightly regressive, the LSTM indicates a trend of significant improvement and the GRU exhibits less obvious changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ShiyuZuo完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
在水一方应助hping采纳,获得10
6秒前
9秒前
10秒前
orixero应助超级的西装采纳,获得10
12秒前
江洋大盗发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
water应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
Rondab应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
22秒前
科研涛发布了新的文献求助10
23秒前
打打应助江洋大盗采纳,获得10
24秒前
了一发布了新的文献求助10
26秒前
Jim发布了新的文献求助10
27秒前
善学以致用应助123采纳,获得10
28秒前
科研涛完成签到,获得积分10
29秒前
czh应助落寞鞋子采纳,获得10
30秒前
引子完成签到,获得积分10
30秒前
陈敏发布了新的文献求助20
33秒前
眷顾发布了新的文献求助10
34秒前
华仔应助11采纳,获得10
36秒前
LUMO完成签到 ,获得积分10
36秒前
售后延长发布了新的文献求助20
38秒前
tudousi完成签到 ,获得积分10
41秒前
共享精神应助快乐仙知采纳,获得10
44秒前
47秒前
王子安举报duanduan求助涉嫌违规
48秒前
49秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167