DATA COLLECTION AND PERFORMANCE EVALUATION OF RUNNING TRAINING SPORT USING DIFFERENT NEURAL NETWORK TECHNIQUES

步伐 人工神经网络 计算机科学 循环神经网络 机器学习 跨步 节奏 人工智能 试验数据 工程类 计算机安全 大地测量学 电子工程 程序设计语言 地理
作者
CAIRU YANG,Yu-Teng Chang
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:23 (04) 被引量:4
标识
DOI:10.1142/s0219519423400535
摘要

With the increasing engagement of human beings in the pursuit of healthcare, running as a sport has become a fashionable and healthcare first choice. This research uses artificial intelligence technology to carry out intelligent analysis when conducting running training. Artificial intelligence technology can accurately analyze and predict the application requirements of sports training postures. We proposed an analysis of sports posture and a prediction system, which uses running training data in the form of a heart rate, recorded on a GPS smart sports watch, as well as using the recurrent neural network (RNN), long and short-term memory (LSTM) and the gate recursive unit (GRU). These three types of neural network methods can predict which method is best suited for a road race and can confirm that it will be completed within the scheduled finish time; these models will also perform an intelligent analysis of physical fitness (heart rate, pace) and running technology (cadence, pace). The training and test data are collected from the running training records (running distance, time, heart rate, stride frequency, stride length, pace, calories, altitude and other characteristic values) as input parameters, to test and compare the running completion time trends of the RNN, LSTM and GRU neural network methods in the exercise table, so as to evaluate their predictive abilities. The results show that the GRU method has the best predictive accuracy, and the least accurate is the LSTM method. After the hidden layers are added to the three predictive methods, the RNN is slightly regressive, the LSTM indicates a trend of significant improvement and the GRU exhibits less obvious changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
紧张的靖荷应助liuzhanyu采纳,获得10
刚刚
1秒前
饕邪发布了新的文献求助10
1秒前
1秒前
star应助人生有味是清欢采纳,获得10
2秒前
2秒前
柯一凡发布了新的文献求助10
2秒前
sasa发布了新的文献求助10
2秒前
武傲翔完成签到,获得积分10
2秒前
2秒前
stay发布了新的文献求助20
3秒前
meng完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
LA排骨完成签到,获得积分10
6秒前
Lucas应助kehan采纳,获得10
6秒前
情怀应助SIA_TERS采纳,获得10
6秒前
6秒前
6秒前
maxyer发布了新的文献求助10
7秒前
小蘑菇应助馥馥采纳,获得10
7秒前
yiyi完成签到,获得积分10
7秒前
7秒前
licol完成签到 ,获得积分10
7秒前
YY发布了新的文献求助10
8秒前
dongxia1314发布了新的文献求助10
8秒前
Jasper应助洋子采纳,获得10
9秒前
9秒前
9秒前
科研通AI5应助猫猫碎碎采纳,获得10
9秒前
不爱蒋道理完成签到 ,获得积分10
11秒前
Yue发布了新的文献求助10
11秒前
12秒前
郭嘉彬发布了新的文献求助10
12秒前
12秒前
奋斗的铅笔完成签到,获得积分10
12秒前
Liao完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503