DATA COLLECTION AND PERFORMANCE EVALUATION OF RUNNING TRAINING SPORT USING DIFFERENT NEURAL NETWORK TECHNIQUES

步伐 人工神经网络 计算机科学 循环神经网络 机器学习 跨步 节奏 人工智能 试验数据 工程类 计算机安全 大地测量学 电子工程 程序设计语言 地理
作者
CAIRU YANG,Yu-Teng Chang
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:23 (04) 被引量:4
标识
DOI:10.1142/s0219519423400535
摘要

With the increasing engagement of human beings in the pursuit of healthcare, running as a sport has become a fashionable and healthcare first choice. This research uses artificial intelligence technology to carry out intelligent analysis when conducting running training. Artificial intelligence technology can accurately analyze and predict the application requirements of sports training postures. We proposed an analysis of sports posture and a prediction system, which uses running training data in the form of a heart rate, recorded on a GPS smart sports watch, as well as using the recurrent neural network (RNN), long and short-term memory (LSTM) and the gate recursive unit (GRU). These three types of neural network methods can predict which method is best suited for a road race and can confirm that it will be completed within the scheduled finish time; these models will also perform an intelligent analysis of physical fitness (heart rate, pace) and running technology (cadence, pace). The training and test data are collected from the running training records (running distance, time, heart rate, stride frequency, stride length, pace, calories, altitude and other characteristic values) as input parameters, to test and compare the running completion time trends of the RNN, LSTM and GRU neural network methods in the exercise table, so as to evaluate their predictive abilities. The results show that the GRU method has the best predictive accuracy, and the least accurate is the LSTM method. After the hidden layers are added to the three predictive methods, the RNN is slightly regressive, the LSTM indicates a trend of significant improvement and the GRU exhibits less obvious changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo_枕星关注了科研通微信公众号
刚刚
刚刚
光亮又晴发布了新的文献求助10
刚刚
刚刚
杜祖盛完成签到,获得积分10
刚刚
1秒前
1秒前
Zzz完成签到,获得积分20
1秒前
TINASO完成签到,获得积分10
2秒前
XIAOXIAOLI完成签到,获得积分10
2秒前
2秒前
yy完成签到,获得积分10
2秒前
喜悦一德发布了新的文献求助10
2秒前
李丽发布了新的文献求助10
2秒前
江一山发布了新的文献求助10
2秒前
SciGPT应助asda采纳,获得10
2秒前
necoe发布了新的文献求助30
3秒前
脑洞疼应助默默曼安采纳,获得10
3秒前
bkagyin应助Ganann采纳,获得10
3秒前
edtaa发布了新的文献求助10
3秒前
SUNYAOSUNYAO发布了新的文献求助10
3秒前
杜祖盛发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
格拉希尔完成签到,获得积分10
4秒前
yeahokk发布了新的文献求助10
5秒前
慕青应助yy采纳,获得10
5秒前
yy发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
jinke发布了新的文献求助10
5秒前
6秒前
L山间葱完成签到,获得积分20
6秒前
shan发布了新的文献求助10
6秒前
6秒前
6秒前
555发布了新的文献求助10
7秒前
浪子应助专注的书白采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836