Multifunctional sustainable films of bacterial cellulose nanocrystal-based, three-phase pickering nanoemulsions: A promising active food packaging for cheese
Owing to increasing plastic pollution and concerns about food safety, extensive research attention has been paid to biodegradable active packaging. Herein, we developed bacterial cellulose nanocrystal (BCN)-based three-phase Pickering nanoemulsion gelatin (GL) films. In detail, bacterial cellulose was obtained using Acetobacter xylinum, which was then hydrolyzed using sulfuric acid to prepare BCNs. Carnosic acid (CA) and ε-polylysine (εPL) were incorporated into the BCN matrix through electrostatic complexation and the matrix was ultrasonically triggered as an emulsification self-assembly strategy, forming the multifunctional BCN-based three-phase O/W Pickering nanoemulsions (CA-εPL PEs). Furthermore, a novel active packaging film (GL-CA-εPL PEs) was designed via intermolecular hydrogen bonding and dehydration condensation by introducing CA-εPL PEs into the 3D network structures of a GL matrix; both phases showed good interaction and compatibility, along with excellent antioxidant, antibacterial, UV-shielding, good mechanical, heat-sealing, sustainable release, and biodegradable properties. Additionally, fresh (acid-coagulated) and mozzarella cheese were packed in the GL-CA-εPL100 PE film, and their shelf life was extended due to delayed lipid peroxidation and inhibition of the growth of spoilage microorganisms. Sensorial and flavored (GC-IMS) analyses showed no significant differences between the samples packed in the GL-CA-εPL100 PE active film and the unpacked samples. This study provides scientific insights for designing BCN-based O/W multifunctional three-phase Pickering nanoemulsion delivery systems for active food packaging; the proposed method can be promising for reducing the environmental impact of plastic pollution.