土壤碳
总有机碳
碳纤维
环境化学
环境科学
土壤科学
土壤水分
土壤有机质
空间变异性
碳循环
化学
生态学
生态系统
数学
统计
复合数
生物
算法
作者
Mercedes Román Dobarco,Alexandre M.J.‐C. Wadoux,Brendan Malone,Budiman Minasny,Alex B. McBratney,Ross Searle
标识
DOI:10.5194/bg-20-1559-2023
摘要
Abstract. Soil organic carbon (SOC) is the largest terrestrial carbon pool. SOC is composed of a continuous set of compounds with different chemical compositions, origins, and susceptibilities to decomposition that are commonly separated into pools characterised by different responses to anthropogenic and environmental disturbance. Here we map the contribution of three SOC fractions to the total SOC content of Australia's soils. The three SOC fractions, mineral-associated organic carbon (MAOC), particulate organic carbon (POC), and pyrogenic organic carbon (PyOC), represent SOC composition with distinct turnover rates, chemistry, and pathway formation. Data for MAOC, POC, and PyOC were obtained with near- and mid-infrared spectral models calibrated with measured SOC fractions. We transformed the data using an isometric-log-ratio (ilr) transformation to account for the closed compositional nature of SOC fractions. The resulting back-transformed ilr components were mapped across Australia. SOC fraction stocks for 0–30 cm were derived with maps of total organic carbon concentration, bulk density, coarse fragments, and soil thickness. Mapping was done by a quantile regression forest fitted with the ilr-transformed data and a large set of environmental variables as predictors. The resulting maps along with the quantified uncertainty show the unique spatial pattern of SOC fractions in Australia. MAOC dominated the total SOC with an average of 59 % ± 17 %, whereas 28 % ± 17 % was PyOC and 13 % ± 11 % was POC. The allocation of total organic carbon (TOC) to the MAOC fractions increased with depth. SOC vulnerability (i.e. POC/[MAOC+PyOC]) was greater in areas with Mediterranean and temperate climates. TOC and the distribution among fractions were the most influential variables in SOC fraction uncertainty. Further, the diversity of climatic and pedological conditions suggests that different mechanisms will control SOC stabilisation and dynamics across the continent, as shown by the model covariates' importance metric. We estimated the total SOC stocks (0–30 cm) to be 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC, which is consistent with previous estimates. The maps of SOC fractions and their stocks can be used for modelling SOC dynamics and forecasting changes in SOC stocks as a response to land use change, management, and climate change.
科研通智能强力驱动
Strongly Powered by AbleSci AI