热致变色
材料科学
纳米颗粒
芯(光纤)
智能材料
壳体(结构)
光子晶体
形状记忆聚合物
纳米技术
光电子学
光子学
形状记忆合金
复合材料
化学
有机化学
作者
Pan Wu,Xiuqing Shen,Christian Schäfer,Jian Pan,Jia Guo,Changchun Wang
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2019-01-01
卷期号:11 (42): 20015-20023
被引量:64
摘要
Shape memory photonic crystals (SMPCs) combining the main characteristics of shape memory materials and photonic crystals have drawn increasing research interest. In sharp contrast to traditional responsive photonic crystals, the temporary shape of SMPCs can be "frozen" and photonic configurations can be modulated by temperature. However, the large-scale fabrication of SMPCs still remains a big challenge, making the practical application difficult. Herein novel scalable SMPC films with both mechanochromic and thermochromic properties are reported. Unlike traditional template-based methods resulting in only a small size, SMPC films are fabricated by a facile hot-pressing method and post-photocuring technology to give large-area freestanding polymer films. The films are mechanically robust and flexible, featuring an excellent structural color which can be changed upon stretching, similar to the color change process of chameleons in response to the environment. The blue-shift of the reflection peak up to 120 nm can be observed when the film is stretched. The films can be reversibly stretched and recovered in 25 cycles without obvious changes in reflection spectra. The temporary shape accompanied by tremendous color changes in the corresponding SMPC films after mechanical stress induced hot programming could be simply fixed by cooling the structure below the glass transition temperature of the polymer matrix. Incorporated programmed optical properties could afterwards be erased by temperature, and initial optical properties could be fully restored. Based on the fully reversible programmable shape as well as optical properties, the investigated SMPC films are expected to be promising candidates for various potential applications, such as smart monitoring, sensors, anti-counterfeiting, and displays.
科研通智能强力驱动
Strongly Powered by AbleSci AI