已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sparkle: User-Aware Viewport Prediction in 360-Degree Video Streaming

视区 计算机科学 用户体验设计 人工智能 计算机图形学(图像) 计算机视觉 人机交互
作者
Jinyu Chen,Xianzhuo Luo,Miao Hu,Di Wu,Yipeng Zhou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 3853-3866 被引量:24
标识
DOI:10.1109/tmm.2020.3033127
摘要

In 360-degree video streaming, users commonly watch a video scene within a Field of View (FoV) . Such observation provides an opportunity to save bandwidth consumption by predicting and then prefetching video tiles within the FoV. However, existing FoV prediction methods seldom consider the diversity among user behaviors and the impact of different video genres. Thus, previous one-size-fits-all models cannot make accurate prediction for users with different behavior patterns. In this paper, we propose a user-aware viewport prediction algorithm called Sparkle , which is a practical whitebox approach for FoV prediction. Instead of training a single learning model to predict the behaviors for all users, our proposed algorithm is tailored to fit each individual user. In particular, unlike other learning models, our prediction model is completely explainable and all the parameters have their physical meanings. We first conduct a measurement study to analyze real user behaviors and observe that there exists sharp fluctuation of view orientation and user posture has significant impact on the viewport movement of users. Moreover, cross-user similarity is diverse across different video genres. Inspired by these insights, we further design a user-aware viewport prediction algorithm by mimicking a user's viewport movement on the tile map, and determine how a user will change the viewport angle based on his (or her) trajectory and other similar users’ behaviors in the past time window. Extensive evaluations with real datasets demonstrate that, our proposed algorithm significantly outperforms the state-of-the-art benchmark methods (e.g., LSTM-based methods) by over $\text{5}\%$ , and the prediction accuracy is much more stable on various types of 360-degree videos than previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
脑洞疼应助lvsehx采纳,获得10
8秒前
Sirene发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Dr-张显华完成签到,获得积分10
12秒前
Dr-张显华发布了新的文献求助10
15秒前
外向思松发布了新的文献求助30
15秒前
yyy完成签到 ,获得积分10
15秒前
修水县1个科研人完成签到 ,获得积分10
16秒前
善良安南发布了新的文献求助10
16秒前
Sirene完成签到,获得积分20
17秒前
20秒前
20秒前
22秒前
lvsehx发布了新的文献求助10
26秒前
27秒前
27秒前
刘隶发布了新的文献求助10
31秒前
37秒前
40秒前
org发布了新的文献求助10
41秒前
44秒前
冯依梦完成签到 ,获得积分10
45秒前
45秒前
sunshine完成签到 ,获得积分10
47秒前
刘隶完成签到,获得积分10
49秒前
qingyue发布了新的文献求助10
50秒前
田様应助qingyue采纳,获得10
1分钟前
张子捷完成签到,获得积分10
1分钟前
1分钟前
汉堡包应助炙热的白风采纳,获得10
1分钟前
1分钟前
堂堂完成签到 ,获得积分10
1分钟前
一个可爱的人完成签到 ,获得积分10
1分钟前
研友_ndDGVn完成签到 ,获得积分10
1分钟前
QIZH发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171412
求助须知:如何正确求助?哪些是违规求助? 2822368
关于积分的说明 7938871
捐赠科研通 2482850
什么是DOI,文献DOI怎么找? 1322830
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627