铀酰
化学
二乙烯三胺
螯合作用
乙二胺
离子交换
铀
扩展X射线吸收精细结构
无机化学
齿合度
氯化物
离子交换树脂
核化学
离子
晶体结构
有机化学
吸收光谱法
材料科学
冶金
物理
量子力学
作者
James T.M. Amphlett,Sungyeol Choi,Stephen Parry,Ellen M. Moon,Clint A. Sharrad,Mark D. Ogden
标识
DOI:10.1016/j.cej.2019.123712
摘要
X-ray absorption fine structure analysis has been successfully used to determine the coordination environment and therefore uptake mechanism towards the uranyl cation for a selection of commercially available ion exchange resins in non-saline and saline conditions ([Cl−] = 22.7 g L−1, 0.64 M) similar to those found in sea water. The resins tested were Purolite S985, S910 and S957, Dowex M4195, Ps-EDA, Ps-DETA and Ps-PEHA, which contain polyamine, amidoxime, mixed sulfonic/phosphonic acid, bispicolylamine, ethylenediamine, diethylenetriamine and pentaethylenehexamine functional groups, respectively. Purolite S910 and S957 were both found to extract the uranyl cation through a chelation mechanism. The uranium coordination environment on uranyl loaded Purolite S910 was found to be either tetra- or hexa-coordinate in the equatorial plane, with a 2:1 ratio of amidoxime:uranium in the fit suggesting either monodentate or η2 coordination by two amidoxime groups. The uranium environment for uranyl loaded Purolite S957 was found to be tetra-coordinate in the equatorial plane, with both sulfonic and phosphonic acid groups being involved in sorption. The presence of chloride in the loading solution had no effect on the uranyl coordination environment observed on any of the resins. In contrast, Dowex M4195, Purolite S985, Ps-EDA, Ps-DETA and Ps-PEHA exhibited an anion exchange mechanism for uranyl uptake as the corresponding extended X-ray absorption fine structure (EXAFS) data best fit a [UO2(SO4)3]4− structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI