亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early lung cancer diagnostic biomarker discovery by machine learning methods

肺癌 医学 代谢组学 生物标志物 癌症 诊断生物标志物 阶段(地层学) 肺癌筛查 内科学 生物标志物发现 肺癌的治疗 癌症生物标志物 肿瘤科 生物信息学 蛋白质组学 生物 古生物学 基因 生物化学
作者
Ying Xie,Wei-Yu Meng,Runze Li,Yuwei Wang,Xin Qian,Chan Chang,Zhifang Yu,Xing‐Xing Fan,Hudan Pan,Chun Xie,Qibiao Wu,Peiyu Yan,Liang Liu,Yijun Tang,Xiaojun Yao,Meifang Wang,Elaine Lai‐Han Leung
出处
期刊:Translational Oncology [Elsevier]
卷期号:14 (1): 100907-100907 被引量:160
标识
DOI:10.1016/j.tranon.2020.100907
摘要

Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的凡儿完成签到,获得积分10
1秒前
BowieHuang应助科研通管家采纳,获得10
34秒前
38秒前
45秒前
55秒前
pegasus0802完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
拼搏姒发布了新的文献求助10
1分钟前
Henvy完成签到,获得积分10
1分钟前
江瑟瑟完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
WerWu完成签到,获得积分0
2分钟前
芽衣完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
hll发布了新的文献求助50
3分钟前
hll完成签到,获得积分10
3分钟前
shhoing应助hu采纳,获得10
3分钟前
盛事不朽完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
玛琳卡迪马完成签到,获得积分10
4分钟前
Chi_bio完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
knight7m完成签到 ,获得积分10
5分钟前
卓天宇完成签到,获得积分0
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
6分钟前
畅快的白枫完成签到 ,获得积分20
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582525
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938