Early lung cancer diagnostic biomarker discovery by machine learning methods

肺癌 医学 代谢组学 生物标志物 癌症 诊断生物标志物 阶段(地层学) 肺癌筛查 内科学 生物标志物发现 肺癌的治疗 癌症生物标志物 肿瘤科 生物信息学 蛋白质组学 生物 古生物学 基因 生物化学
作者
Ying Xie,Wei-Yu Meng,Runze Li,Yuwei Wang,Xin Qian,Chan Chang,Zhifang Yu,Xing‐Xing Fan,Hudan Pan,Chun Xie,Qibiao Wu,Peiyu Yan,Liang Liu,Yijun Tang,Xiaojun Yao,Meifang Wang,Elaine Lai‐Han Leung
出处
期刊:Translational Oncology [Elsevier]
卷期号:14 (1): 100907-100907 被引量:160
标识
DOI:10.1016/j.tranon.2020.100907
摘要

Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
小哦嘿应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小哦嘿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
爱吃地锅鱼完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
cgh发布了新的文献求助10
4秒前
5秒前
filili完成签到,获得积分10
5秒前
烂漫的涫完成签到 ,获得积分10
7秒前
来了来了完成签到 ,获得积分10
7秒前
9秒前
一一完成签到,获得积分10
9秒前
浮游应助Qian采纳,获得10
9秒前
mtfx发布了新的文献求助20
9秒前
10秒前
10秒前
CipherSage应助微笑晓丝采纳,获得10
10秒前
Owen应助cgh采纳,获得10
11秒前
12秒前
浮游应助fzzf采纳,获得10
13秒前
13秒前
优美紫槐应助成就的鲂采纳,获得10
15秒前
16秒前
kakawang完成签到 ,获得积分10
16秒前
共享精神应助GuiChenli采纳,获得10
16秒前
无花果应助你好采纳,获得10
17秒前
汉堡包应助典雅的悟空采纳,获得10
17秒前
17秒前
hhj发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176