肺癌
医学
代谢组学
生物标志物
癌症
肺
诊断生物标志物
阶段(地层学)
肺癌筛查
内科学
生物标志物发现
肺癌的治疗
癌症生物标志物
肿瘤科
生物信息学
蛋白质组学
生物
古生物学
基因
生物化学
作者
Ying Xie,Wei-Yu Meng,Runze Li,Yuwei Wang,Xin Qian,Chan Chang,Zhifang Yu,Xing‐Xing Fan,Hudan Pan,Chun Xie,Qibiao Wu,Peiyu Yan,Liang Liu,Yijun Tang,Xiaojun Yao,Meifang Wang,Elaine Lai‐Han Leung
标识
DOI:10.1016/j.tranon.2020.100907
摘要
Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI