Early lung cancer diagnostic biomarker discovery by machine learning methods

肺癌 医学 代谢组学 生物标志物 癌症 诊断生物标志物 阶段(地层学) 肺癌筛查 内科学 生物标志物发现 肺癌的治疗 癌症生物标志物 肿瘤科 生物信息学 蛋白质组学 生物 古生物学 基因 生物化学
作者
Ying Xie,Wei-Yu Meng,Runze Li,Yuwei Wang,Xin Qian,Chan Chang,Zhifang Yu,Xing‐Xing Fan,Hudan Pan,Chun Xie,Qibiao Wu,Peiyu Yan,Liang Liu,Yijun Tang,Xiaojun Yao,Meifang Wang,Elaine Lai‐Han Leung
出处
期刊:Translational Oncology [Elsevier]
卷期号:14 (1): 100907-100907 被引量:160
标识
DOI:10.1016/j.tranon.2020.100907
摘要

Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
Rubyii发布了新的文献求助10
刚刚
zzzzzzz完成签到 ,获得积分10
1秒前
1秒前
1秒前
PORCO完成签到,获得积分10
2秒前
浮游应助Zac采纳,获得10
3秒前
4秒前
英姑应助西子采纳,获得10
5秒前
5秒前
yaoyao发布了新的文献求助10
6秒前
6秒前
yijibaoli完成签到 ,获得积分10
7秒前
7秒前
及禾发布了新的文献求助10
7秒前
研友_n2Qv2L发布了新的文献求助10
7秒前
8秒前
7788完成签到,获得积分10
9秒前
FyD关闭了FyD文献求助
10秒前
10秒前
wch发布了新的文献求助10
10秒前
11秒前
瞿绝悟发布了新的文献求助10
11秒前
沉静飞雪完成签到,获得积分10
11秒前
11秒前
聂珩发布了新的文献求助10
11秒前
11秒前
寒冷的书白完成签到,获得积分20
12秒前
橙子发布了新的文献求助10
13秒前
Lucas应助李里哩采纳,获得10
13秒前
腼腆的初蓝完成签到,获得积分10
14秒前
15秒前
wz关注了科研通微信公众号
15秒前
狐妖完成签到,获得积分10
16秒前
wwwwww发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
辛勤秋双发布了新的文献求助20
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082