Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels

自愈水凝胶 纳米技术 环境友好型 催化作用 生物相容性 材料科学 氧化还原 化学 木质素 儿茶酚 绿色化学 组合化学 有机化学 反应机理 生态学 生物
作者
Samson Afewerki,Xichi Wang,Guillermo U. Ruiz‐Esparza,Cheuk‐Wai Tai,Xueying Kong,Shengyang Zhou,Ken Welch,Ping Huang,Rhodel Bengtsson,Chao Xu,Maria Strömme
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (12): 17004-17017 被引量:137
标识
DOI:10.1021/acsnano.0c06346
摘要

The engineering of multifunctional biomaterials using a facile sustainable methodology that follows the principles of green chemistry is still largely unexplored but would be very beneficial to the world. Here, the employment of catalytic reactions in combination with biomass-derived starting materials in the design of biomaterials would promote the development of eco-friendly technologies and sustainable materials. Herein, we disclose the combination of two catalytic cycles (combined catalysis) comprising oxidative decarboxylation and quinone-catechol redox catalysis for engineering lignin-based multifunctional antimicrobial hydrogels. The bioinspired design mimics the catechol chemistry employed by marine mussels in nature. The resultant multifunctional sustainable hydrogels (1) are robust and elastic, (2) have strong antimicrobial activity, (3) are adhesive to skin tissue and various other surfaces, and (4) are able to self-mend. A systematic characterization was carried out to fully elucidate and understand the facile and efficient catalytic strategy and the subsequent multifunctional materials. Electron paramagnetic resonance analysis confirmed the long-lasting quinone-catechol redox environment within the hydrogel system. Initial in vitro biocompatibility studies demonstrated the low toxicity of the hydrogels. This proof-of-concept strategy could be developed into an important technological platform for the eco-friendly, bioinspired design of other multifunctional hydrogels and their use in various biomedical and flexible electronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘佳完成签到 ,获得积分10
刚刚
萧水白应助追梦大鹏采纳,获得20
2秒前
Flyzhang完成签到,获得积分10
3秒前
刘相君完成签到 ,获得积分10
3秒前
Hello应助dandelionshun采纳,获得10
3秒前
哈哈2022发布了新的文献求助10
4秒前
思源应助戈壁滩的鱼采纳,获得10
6秒前
自由初夏发布了新的文献求助20
10秒前
10秒前
Aoren完成签到,获得积分10
11秒前
快快跑咯发布了新的文献求助10
13秒前
13秒前
Singularity应助巫马小霜采纳,获得20
14秒前
dww发布了新的文献求助10
14秒前
DE完成签到,获得积分20
16秒前
ghost发布了新的文献求助10
16秒前
852应助布洛芬采纳,获得10
16秒前
啦啦啦发布了新的文献求助10
19秒前
阿三完成签到 ,获得积分10
22秒前
wanci应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得30
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
泠泠泠萘应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
扶石完成签到,获得积分10
24秒前
24秒前
来都来了完成签到 ,获得积分10
24秒前
25秒前
CodeCraft应助Cwx2020采纳,获得10
26秒前
Orange应助啦啦啦采纳,获得10
28秒前
wangayting发布了新的文献求助30
28秒前
活力元龙完成签到 ,获得积分10
29秒前
29秒前
大力的飞莲完成签到,获得积分10
30秒前
dandelionshun发布了新的文献求助10
31秒前
脑洞疼应助甜甜采纳,获得10
31秒前
123完成签到,获得积分10
32秒前
彭超完成签到 ,获得积分10
32秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023