计算机科学
造谣
假新闻
图形
二元分类
光学(聚焦)
人工智能
社会化媒体
机器学习
社会关系图
监督学习
任务(项目管理)
人工神经网络
支持向量机
理论计算机科学
万维网
互联网隐私
经济
物理
管理
光学
作者
Adrien Benamira,Benjamin Devillers,Etienne Lesot,Ayush K. Ray,Manal Saadi,Fragkiskos D. Malliaros
标识
DOI:10.1145/3341161.3342958
摘要
Social networks have become the main platforms for information dissemination. Nevertheless, due to the increasing number of users, social media platforms tend to be highly vulnerable to the propagation of disinformation - making the detection of fake news a challenging task. In this work, we focus on content-based methods for detecting fake news - casting the problem to a binary text classification one (an article corresponds to either fake news or not). In particular, our work proposes a graph-based semi-supervised fake news detection method based on graph neural networks. The experimental results indicate that the proposed methodology achieves better performance compared to traditional classification techniques, especially when trained on limited number of labeled articles1.
科研通智能强力驱动
Strongly Powered by AbleSci AI