ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation

计算机科学 鉴别器 数据挖掘 插补(统计学) 判别式 编码器 缺少数据 智能交通系统 人工智能 机器学习 实时计算 模式识别(心理学) 探测器 工程类 土木工程 操作系统 电信
作者
Bing Yang,Yan Kang,Yaoyao Yuan,Xin Huang,Hao Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:215: 106705-106705 被引量:75
标识
DOI:10.1016/j.knosys.2020.106705
摘要

Real-time, accurate and comprehensive traffic flow data is the key of intelligent transportation systems to provide efficient services for urban transportation. In the process of collecting data, there are many factors causing data loss, which needs to be supplemented and repaired to reduce the instability, and improve the precision of system application in the intelligent transportation system. This paper proposes a Spatio-Temporal Learnable Bidirectional Attention Generative Adversarial Networks (ST-LBAGAN) for missing traffic data imputation. First, we take external factors, historical observations, incomplete data, and masked image as the input of generator, and obtain the missing data imputation by using binary classification as the output of the discriminator. Secondly, the encoder and decoder of generator are constructed on the basis of the U-Net. The forward attention map and the reverse attention map of learnable bidirectional attention correspond to the encoder and the decoder respectively to effectively obtain the spatial–temporal random characteristics of traffic flow. Thirdly, high-level and low-level features, in the encoder and decoder, are combined by multiple skip connections. Furthermore, a new objective function is optimized by combining masked reconstruction loss, perceptual loss, discriminative loss and adversarial loss to improve the data imputation ability. Finally, our model is well-adapted on the Beijing taxi GPS dataset. The experimental results show that an improved state-of-the-art performance is achieved on various standard benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程意善完成签到,获得积分10
2秒前
万能图书馆应助strelizia采纳,获得10
2秒前
精明凡双应助bingobigtree采纳,获得10
4秒前
婷婷发布了新的文献求助10
4秒前
rainbow5432完成签到 ,获得积分10
4秒前
华仔应助郭嘉仪采纳,获得10
6秒前
科研通AI2S应助龙行天下采纳,获得10
8秒前
ce关注了科研通微信公众号
8秒前
9秒前
10秒前
辰辰完成签到 ,获得积分10
13秒前
13秒前
dandna完成签到 ,获得积分10
14秒前
赵海锋发布了新的文献求助10
14秒前
15秒前
15秒前
TTTTT发布了新的文献求助10
15秒前
16秒前
脑洞疼应助婷婷采纳,获得10
19秒前
哦豁拐咯完成签到,获得积分10
20秒前
20秒前
小智0921完成签到,获得积分10
20秒前
anan应助xiaohu采纳,获得20
21秒前
21秒前
老纪1999完成签到,获得积分10
21秒前
XIA发布了新的文献求助10
21秒前
彤彤发布了新的文献求助10
22秒前
静1997完成签到,获得积分20
22秒前
小马甲应助贪玩的寄松采纳,获得10
23秒前
核桃酥发布了新的文献求助10
24秒前
24秒前
静1997发布了新的文献求助10
26秒前
春风十里完成签到,获得积分10
26秒前
科目三应助scifff采纳,获得10
28秒前
28秒前
ce发布了新的文献求助10
29秒前
XIA完成签到,获得积分10
29秒前
32秒前
fred完成签到,获得积分20
32秒前
共享精神应助期颐七采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818