Combined Multi-Physics and Machine Learning Approach to Forecast SEI Decomposition in LIBs

热失控 放热反应 电池(电) 热分解 电解质 热的 核工程 电极 材料科学 计算机科学 模拟 工程类 物理 化学 热力学 功率(物理) 有机化学 量子力学
作者
Paolo De Angelis,Vitaliy Yurkiv,Pietro Asinari,Farzad Mashayek
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (4): 777-777 被引量:1
标识
DOI:10.1149/ma2020-024777mtgabs
摘要

Over the last two decades, the tremendous efforts of researchers brought the Li-ion battery (LIB), based upon the intercalated graphite electrode, to its advanced level enabling their wide-spread application. Unfortunately, high demand led to many safety problems especially associated with thermal runaway. A very common reason of LIBs’ thermal runaway is the exothermic decomposition of solid electrolyte interface (SEI) leading to a battery’s rapid self-heating and in extreme scenarios to explosion. It is very challenging to suppress, control or sometimes even observe the thermal runaway due to the SEI formation/decomposition in realistic operation conditions. However, the evolution of thermal and electric parameters during LIBs operation may indicate the occurrence of thermal runaway, which will allow its early forecasting and corresponding suppression. In order to predict the thermal runaway in LIBs, we use machine learning (ML) techniques, in particular, convolutional neural network (CNN) and deep neural network (DNN) to identify temperature pattern change leading to the thermal runaway. The ML methods are trained based upon the images obtained from the multi-physics calculations using Comsol software package. The pouch type LIB consisting of five distinct layers, i.e., two current collectors, negative and positive electrodes and electrolyte, is considered. The electrochemical model is based on a 1D continuum description of reaction and transport along electrodes, electrolyte and current collectors, plus an additional dimension in the electrode particle (P2D). 1 The SEI formation/decomposition is modeled using the parasitic current approach. 2,3 We investigate three regimes of thermal runaway occurrence, i.e., a single heat source, two heat sources and multiple sources. Correspondingly, different CNN and DNN architectures have been built and trained based upon the images from multi-physics calculations. The prediction of the trained network has been tested using simulated and literature available data. References [1] Newman, J.; Tiedemann, W. Potential and Current Distribution in Electrochemical Cells. J. Electrochem. Soc. 1993 , 140 (7), 1–5. [2] Wang, K.; Xing, L.; Zhi, H.; Cai, Y.; Yan, Z.; Cai, D.; Zhou, H.; Li, W. High Stability Graphite/Electrolyte Interface Created by a Novel Electrolyte Additive: A Theoretical and Experimental Study. Electrochimica Acta 2018 , 262 , 226–232. https://doi.org/10.1016/j.electacta.2018.01.018 . [3] Safari, M.; Morcrette, M.; Teyssot, A.; Delacourt, C. Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of the Electrochemical Society 2009 , 156 (3), 145–153. https://doi.org/10.1149/1.3043429 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满的秋灵完成签到 ,获得积分10
刚刚
Scarlett发布了新的文献求助10
1秒前
1秒前
1秒前
纱夏完成签到,获得积分10
1秒前
2秒前
犹豫酸奶完成签到,获得积分10
2秒前
3秒前
Evan666完成签到,获得积分10
3秒前
memory完成签到,获得积分10
4秒前
圆圆完成签到 ,获得积分10
4秒前
好奇宝宝完成签到,获得积分10
4秒前
深情安青应助Lynette采纳,获得10
4秒前
5秒前
敏感静发布了新的文献求助10
5秒前
Yziii发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
HY发布了新的文献求助10
6秒前
yuanqi完成签到,获得积分10
6秒前
安静尔云发布了新的文献求助10
6秒前
7秒前
7秒前
ttt完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
沉积岩完成签到,获得积分10
8秒前
jtyt完成签到,获得积分10
9秒前
Benzhdw完成签到,获得积分10
9秒前
9秒前
脑洞疼应助alpha88采纳,获得10
10秒前
小灯发布了新的文献求助10
10秒前
10秒前
shy完成签到,获得积分10
11秒前
科研通AI2S应助冷酷的友绿采纳,获得10
11秒前
dudu960702发布了新的文献求助10
11秒前
11秒前
氼乚发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303593
求助须知:如何正确求助?哪些是违规求助? 2937893
关于积分的说明 8484865
捐赠科研通 2611823
什么是DOI,文献DOI怎么找? 1426334
科研通“疑难数据库(出版商)”最低求助积分说明 662567
邀请新用户注册赠送积分活动 647118