Combined Multi-Physics and Machine Learning Approach to Forecast SEI Decomposition in LIBs

热失控 放热反应 电池(电) 热分解 电解质 热的 核工程 电极 材料科学 计算机科学 模拟 工程类 物理 化学 热力学 功率(物理) 有机化学 量子力学
作者
Paolo De Angelis,Vitaliy Yurkiv,Pietro Asinari,Farzad Mashayek
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (4): 777-777 被引量:1
标识
DOI:10.1149/ma2020-024777mtgabs
摘要

Over the last two decades, the tremendous efforts of researchers brought the Li-ion battery (LIB), based upon the intercalated graphite electrode, to its advanced level enabling their wide-spread application. Unfortunately, high demand led to many safety problems especially associated with thermal runaway. A very common reason of LIBs’ thermal runaway is the exothermic decomposition of solid electrolyte interface (SEI) leading to a battery’s rapid self-heating and in extreme scenarios to explosion. It is very challenging to suppress, control or sometimes even observe the thermal runaway due to the SEI formation/decomposition in realistic operation conditions. However, the evolution of thermal and electric parameters during LIBs operation may indicate the occurrence of thermal runaway, which will allow its early forecasting and corresponding suppression. In order to predict the thermal runaway in LIBs, we use machine learning (ML) techniques, in particular, convolutional neural network (CNN) and deep neural network (DNN) to identify temperature pattern change leading to the thermal runaway. The ML methods are trained based upon the images obtained from the multi-physics calculations using Comsol software package. The pouch type LIB consisting of five distinct layers, i.e., two current collectors, negative and positive electrodes and electrolyte, is considered. The electrochemical model is based on a 1D continuum description of reaction and transport along electrodes, electrolyte and current collectors, plus an additional dimension in the electrode particle (P2D). 1 The SEI formation/decomposition is modeled using the parasitic current approach. 2,3 We investigate three regimes of thermal runaway occurrence, i.e., a single heat source, two heat sources and multiple sources. Correspondingly, different CNN and DNN architectures have been built and trained based upon the images from multi-physics calculations. The prediction of the trained network has been tested using simulated and literature available data. References [1] Newman, J.; Tiedemann, W. Potential and Current Distribution in Electrochemical Cells. J. Electrochem. Soc. 1993 , 140 (7), 1–5. [2] Wang, K.; Xing, L.; Zhi, H.; Cai, Y.; Yan, Z.; Cai, D.; Zhou, H.; Li, W. High Stability Graphite/Electrolyte Interface Created by a Novel Electrolyte Additive: A Theoretical and Experimental Study. Electrochimica Acta 2018 , 262 , 226–232. https://doi.org/10.1016/j.electacta.2018.01.018 . [3] Safari, M.; Morcrette, M.; Teyssot, A.; Delacourt, C. Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of the Electrochemical Society 2009 , 156 (3), 145–153. https://doi.org/10.1149/1.3043429 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mlwwq完成签到,获得积分10
1秒前
1秒前
小皮蛋儿完成签到,获得积分10
1秒前
lyn发布了新的文献求助10
1秒前
JUSTs0so完成签到,获得积分10
2秒前
失联者完成签到,获得积分10
2秒前
感性的神级完成签到,获得积分10
2秒前
眯眯眼的谷冬完成签到 ,获得积分10
2秒前
2秒前
花莫凋零发布了新的文献求助10
3秒前
szh123完成签到,获得积分10
3秒前
3秒前
安息香发布了新的文献求助10
3秒前
核桃完成签到,获得积分10
3秒前
丹dan发布了新的文献求助10
3秒前
3秒前
科研通AI5应助大方嵩采纳,获得10
4秒前
4秒前
HYG发布了新的文献求助30
4秒前
4秒前
宝贝发布了新的文献求助10
4秒前
FashionBoy应助tulip采纳,获得10
4秒前
万泉部诗人完成签到,获得积分10
5秒前
文静千愁发布了新的文献求助10
5秒前
YAN发布了新的文献求助10
5秒前
马洛发布了新的文献求助10
5秒前
5秒前
qiqi完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
喻辰星发布了新的文献求助10
7秒前
jasmine970000完成签到,获得积分10
7秒前
神勇的雅香应助zhanzhanzhan采纳,获得10
8秒前
研友_8yPrqZ完成签到,获得积分10
8秒前
自信的伊完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762