Hollow Prussian blue analogue/g-C3N4 nanobox for all-solid-state asymmetric supercapacitor

超级电容器 普鲁士蓝 材料科学 介孔材料 功率密度 阴极 储能 纳米技术 电化学 化学工程 电极 电容 化学 功率(物理) 催化作用 有机化学 工程类 物理化学 物理 量子力学
作者
Yangming Shi,Pinghua Chen,Jiezeng Chen,Dezhi Chen,Hongying Shu,Hualin Jiang,Xubiao Luo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:404: 126284-126284 被引量:69
标识
DOI:10.1016/j.cej.2020.126284
摘要

Supercapacitors are highly promising energy storage/conversion devices owing to their outstanding advantages such as high power density, long operational life, flash charge/discharge speed, and low cost. However, the low energy density is the bottleneck limiting their wide application. Acquirement of high-performance supercapacitors with ultrahigh energy density closed to batteries’ is still a challenge. In this study, a mesoporous hollow Prussian blue analogues (PBA) nano-box/g-C3N4 hybrid was successfully synthesized. It shows excellent electrochemical performance with a high specific capacity of 201.6 mAh g−1 and outstanding cycling stability (90.1% capacity retention after 5,000 cycles), which are significantly higher than those of most other PB/PBA based electrode materials. Furthermore, it was coupled with active carbon to construct an all-solid-state asymmetric supercapacitor denoted as H Rb-NiHCF/g-C3N4//AC, which exhibits a high energy density of 46.9 Wh kg−1 at the power density of 808.2 W kg−1, which is closed to that of commercial Ni/MH batteries. It also shows good cycling stability. Furthermore, it can easily light up a LED indicator and efficiently work for more than 3 min. This mesoporous hollow PBA nano-box/g-C3N4 hybrid demonstrates its high practical potential for cathode materials in high-performance supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lrz发布了新的文献求助10
1秒前
Metrol_Wang发布了新的文献求助10
2秒前
安静代萱发布了新的文献求助10
2秒前
3秒前
炙热怜寒发布了新的文献求助30
3秒前
gogo发布了新的文献求助10
4秒前
独特的秋白完成签到,获得积分10
4秒前
5秒前
哈哈发布了新的文献求助10
6秒前
7秒前
愉快谷芹发布了新的文献求助10
8秒前
且行丶且努力完成签到,获得积分10
8秒前
9秒前
9秒前
炙热怜寒完成签到,获得积分20
10秒前
Jason2002完成签到 ,获得积分10
10秒前
Nidhogg完成签到,获得积分10
10秒前
徐必成完成签到,获得积分20
10秒前
11秒前
11秒前
Zqs发布了新的文献求助10
11秒前
南山发布了新的文献求助20
12秒前
李爱国应助等待的寒松采纳,获得10
14秒前
15秒前
无私小苏完成签到,获得积分20
15秒前
16秒前
酷炫的菠萝完成签到 ,获得积分10
16秒前
Li应助摸鱼咯采纳,获得30
16秒前
Owen应助顺利毕业采纳,获得10
17秒前
搞怪的酬海完成签到,获得积分10
17秒前
黑海岸学者完成签到,获得积分10
18秒前
18秒前
研友完成签到,获得积分0
19秒前
称心的寄风完成签到,获得积分10
20秒前
20秒前
十元完成签到,获得积分10
20秒前
21秒前
ashley完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534