EEG-Based Emotion Recognition Using Regularized Graph Neural Networks

脑电图 邻接矩阵 计算机科学 人工智能 图形 模式识别(心理学) 人工神经网络 邻接表 心理学 神经科学 算法 理论计算机科学
作者
Peixiang Zhong,Di Wang,Chunyan Miao
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 1290-1301 被引量:518
标识
DOI:10.1109/taffc.2020.2994159
摘要

Electroencephalography (EEG) measures the neuronal activities in different brain regions via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit the topology of EEG channels. In this article, we propose a regularized graph neural network (RGNN) for EEG-based emotion recognition. RGNN considers the biological topology among different brain regions to capture both local and global relations among different EEG channels. Specifically, we model the inter-channel relations in EEG signals via an adjacency matrix in a graph neural network where the connection and sparseness of the adjacency matrix are inspired by neuroscience theories of human brain organization. In addition, we propose two regularizers, namely node-wise domain adversarial training (NodeDAT) and emotion-aware distribution learning (EmotionDL), to better handle cross-subject EEG variations and noisy labels, respectively. Extensive experiments on two public datasets, SEED, and SEED-IV, demonstrate the superior performance of our model than state-of-the-art models in most experimental settings. Moreover, ablation studies show that the proposed adjacency matrix and two regularizers contribute consistent and significant gain to the performance of our RGNN model. Finally, investigations on the neuronal activities reveal important brain regions and inter-channel relations for EEG-based emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
139完成签到 ,获得积分0
刚刚
1秒前
5km完成签到,获得积分10
1秒前
wpxyy发布了新的文献求助10
2秒前
2秒前
3秒前
FangyingTang完成签到 ,获得积分10
3秒前
3秒前
LILING完成签到,获得积分10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得30
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
gao发布了新的文献求助10
4秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
文风杰采完成签到,获得积分10
4秒前
梦溪发布了新的文献求助10
5秒前
牛牛牛完成签到,获得积分10
5秒前
董蓝天完成签到 ,获得积分10
6秒前
善学以致用应助科研八戒采纳,获得10
6秒前
7秒前
SciGPT应助Chaimengdi采纳,获得10
7秒前
7秒前
华仔应助迟原采纳,获得10
8秒前
风趣的涵柏完成签到,获得积分10
9秒前
Fang7No完成签到,获得积分10
9秒前
Yvonne发布了新的文献求助20
9秒前
领导范儿应助小巧的大米采纳,获得10
9秒前
王思甜发布了新的文献求助10
9秒前
木子完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942